Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

REPRESENTING AND AUTOMATING RHYTHMIC PATTERN

TRANSFORMATIONS
Lonce Wyse Keith Tan Peter Kellock
National University of National University of Independent
Singapore Singapore researcher/composer
lonce.wyse@nus.edu.sg Keith@SonicDivergence.com petekellock@gmail.com

ABSTRACT

In this paper, we describe a novel system for the
composition and transformation of polyphonic rhythmic
patterns - the Rhythmorpher. The Rhythmorpher makes
automated and seamless transitions between
precomposed segments despite the typically multiple
and sometimes conflicting constraints the precomposed
segments impose. The system is designed to address
musical issues that arise in real time interactive
applications such as computer games.

Rhythmorpher patterns are represented by high-level
descriptive parameters. Events are generated in real-time
for a percussion synthesizer so that patterns can be
sensitive to external contexts and quickly respond to
changes. Transitions between precomposed segments are
interpolations of the high-level pattern description
parameters which produce results very different from
simple crossfades. Smooth transitions can be made
between precomposed segments of different speeds,
swing styles, instrumentations, and even time signatures,
and can be executed over any duration of time.

1. INTRODUCTION

One of the most challenging environments for adaptive
music is computer games. Game music is typically
composed as a collection of “cells”, each designed to
accompany different game states which can number in
the thousands. Because state durations are generally not
known, cells can be either lengthy or designed to loop
indefinitely. In either case, the challenge is that state
changes can happen suddenly and without warning,
necessitating musical transitions at arbitrary points in the
composed segments.

Standard interactive game music composition systems
support several ways of making transitions. Crossfades
simply take a specified duration of time to fade one cell
out as another fades in. This is not a very sophisticated
way of fitting the two segments together. It is unable to
handle tempo matching, for example, and so generally
sounds jarring [5]. Another technique uses a collection
of precomposed transition cells designed specifically for
segues between particular precompsed segments. Since
they are handcrafted, they can be sensitive to the musical
characteristics of the segments they are connecting.
However, they too can only be sensibly spliced in at
specific points of time. Furthermore, the number of
precomposed segments necessary goes up quickly with
the number of possible adjacent game states and

320

transition time flexibility requirements [3, 4].At costs of
up to 1500 USD per minute of music, and potentially
thousands of hours of listening time from players, a
system that allows for the cheap and easy generation of
music that responds well to changing contexts is
essential.

The Rhythmorpher was developed to aid in the
production and transition of polyphonic percussive
music specifically in the area of game music. The high
level parametric representations used in the
Rhythmorpher are grounded in performance principals
to facilitate the process of composing large amounts of
music in a wide variety styles. Morphing between
segments composed using the Rhythmorpher is simple
and there are no restrictions on when and how long
transitions can be made. A very large number of
transitions are possible — one for every pair of
precomposed segments, and transitions always reflect
the individual characteristics of the segments they
connect.

2. RELATED WORK

Agate [3] is a system that takes the game’s
environmental and musical data as input. A high level
script containing music generation grammar interprets
and translates the inputs into music. While Agate is
reactive and allows for the composition of an infinite
amount of dynamic music, its compositional method
does not lend itself well to thematically driven musical
styles nor does it provide an alternative to musical
transitions other than cross fades.

FMod [1] and Jet [2] are both tools which allow for
the mapping of musical events via programmed
parameters. For example, both choose segments of
music from a database depending on context, and both
support precomposed transition segments. It is also
possible to have a segment fade through a precomposed
transition before reaching the destination track.

Although there are numerous systems which
specialize in pitch based composition, recent years have
seen an emergence of systems which focus on the
generation of percussive music. Among the techniques
used are genetic algorithms, intelligent multi-agents as
well as Cellular Automata [9]. Some are based on
genetic algorithms [6, 7] that allow for interactive user
evaluations to find musically desired solutions.
However, the use of a human in the loop creates a
resource bottleneck [12] making them unsuitable for use
in the games industry. While multi-agent systems such as

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

the Kinetic Engine [8] can be used to simulate drummers
improvising within a percussion ensemble and hence
provide a means by which composers can generate
percussive music embedded in musical transitions
between segments, the system has limited parametric
control which makes it inappropriate for application in
games.

3. THE RHYTHMORPHER

In its current implementation, the Rhythmorpher consists
of 55 possible sample-based percussive instruments
corresponding to the general MIDI set. It also provides
an interface of high level parameters used to manipulate
the instruments. These parameters can be broadly
grouped into per-instrument parameters and ensemble
pattern parameters. Per-instrument parameters can
further be subdivided into those which generate the core
rhythmic patterns and those which allow for
humanization and variations of those patterns. Ensemble
rhythmic pattern parameters include swing, time
signature and the morphing control for transitions
between preset rhythmic patterns.

A key goal in the design of the Rhythmorpher wasthe
representation of rhythmic patterns in terms of high level
descriptive parameters. This is the space in which
interpolation between different preset patterns generates
rhythms that lie perceptually between patterns at the
interpolation endpoints. The same parametric
representation is used by composers to author the preset
rhythms and hence has to be intuitive and capable of
representing any desired pattern. While control over the
weight of every single beat division for every single
instrument (as in a step sequencer) would allow for the
creation of arbitrary rhythms, such a representation
would not be a very capable or interesting space for
pattern interpolation.

We have thus developed a representation wherein
composers create polyphonic rhythmic patterns by
manipulating a set of high level musically-descriptive
parameters, each of which varies beat division weightage
and timings across the entire pattern. The parameters
used in the Rhythmorpher are familiar musical concepts
and are described below.

3.1. The metrical hierarchy

The basis for the rhythmic pattern representation used
in the Rythmorpher is the “metrical hierarchy” [13] in
western music which is made up of a pattern of beats
and beat division, each accorded a different weight in
significance and generally in amplitude level. A series of
16" notes within a 4/4 metrical context can be
represented as in Figure 1 with the hierarchy index
number 1 identifying the downbeat, 2 identifying the
half-measure position, 3 identifying the second and
fourth beat and 4 and 5 identifying the half-beat and
quarter-beat positions respectively. The height of the
graph points denotes arbitrary weights (here represented

as velocity). This representation will be referenced
throughout the paper.

120 -

[y
=
=)

—— Rhythmic Pattern

Velocity
+- = o
=] (=] (=]

)
=]

Figure 1. Numerical representation of the metrical
hierarchy for 4/4 meter.

3.2. Per-instrument Controls

This section introduces the parameters that apply to the
rhythmic patterns for individual instruments.

The parameter “Straight” influences the downbeat
velocities of a rhythmic pattern, “Offbeat” influences the
upbeat velocities of a rhythmic pattern, and
“Syncopation” influences beat divisions that have onsets
occurring at a low metrical level in the hierarchy (high
number) and are sustained through to a beat in the
metrical hierarchy that has a higher metrical level (low
number). Figure 2 shows the difference in beat patterns
that these parameters influence.

120
1 Offbeat
100 -

Straight

====Syncopated

®
>

Velocity
=
=

1 5 4 5 3 5 4 5 2 5 4 5 3 5 4 5
Numerical Representation of Meter

Figure 2. Beat emphasis patterns represented by the
Straight, Offbeat and Syncopation parameters.

Figure 3 illustrates how the “Phase” parameter shifts
the numerical representations of the metrical hierarchy
with respect to the beat cycle. “Random” adds or
subtracts a random velocity from each beat in the meter
while “Mean” adds or subtracts velocities by a
predefined amount across the whole pattern. “Ramp” as
its name suggests, gradually increases and then
decreases (or vice versa), the velocities of each beat
over the course of a bar. “Threshold” specifies a
minimum velocity beats in an instrument pattern must
possess in order to be played by the system.

321

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

—— Rthymic Pattern

= = Threshold

Numerical Representation of Meter

Figure 3. Phased rhythmic pattern with velocity
threshold of 60. Note the shift in representation of
meter compared to Figure 1.

3.3. Ensemble rhythmic pattern controls

Parameters described in this section influence the
rhythmic pattern of the entire ensemble of instruments.
Time signatures can range over a variety of simple
and compound signatures. A “Swing Ratio” parameter
affects the relative timing of adjacent pairs of metrical
durations that together constitute what we refer to as the
“swing unit” by extending the first element and
shortening the second while holding the duration of the
whole swing unit constant [10]. Studies on swing [10,
11] have shown that the long/short ratio typically ranges
from 1:1 to 3.5:1 with slower tempos tending to have
higher ratios. Ratios in this range have been used in
generative systems for creating swing [14].
The Rhythmorpher provides users with possible swing
ratios ranging from 1:1 to 5:2 and the ability to choose
swing units corresponding to eighth, quarter, half and
whole notes. While it is uncommon for composers to
choose swing units that are not factors of the time
signature, for example a swing unit of a half note in a
bar of 5/8 meter, we permit this in the Rhythmorpher by
ignoring bar divisions if this case. Aside from providing
more options to the composer, this simplifies
interpolation between rhythmic patterns of different time
signatures during morphs.

3.4. Applications of morph

The main feature of the Rhythmorpher is its ability to
generate music that allows for seamless transitions
between two rhythmic patterns that we call a “morph.”
Morphing refers to the process of generating a rhythmic
pattern by interpolating between two sets of high level
parameters (the original rhythmic patterns) and is
different from a crossfade which is the gradual increase
and decrease of volume between two audio signals. By
moving the Morph parameter from one endpoint to the
other, a transition between any two rhythmic patterns
can be made over any transition duration.

3.5. Morphing # Crossfade

Due to the interpolation in the space of the high-level
parameters representing patterns and the non-linear

322

relationship between the parameter values and
velocities, a morph is significantly different to crossfade.
For example, morphing sometimes results in transitions
containing instrumental events that were not in either of
the original rhythmic patterns. This is because the
representation of velocities for all instruments across all
beat divisions as well as the threshold for playing are in
constant relative flux during a morph.

3.6. Morphing between different swing pattern

Adjusting individual beat durations is another factor
which differentiates a rhythmic morph from a crossfade.
If two preset patterns to be interpolated have the same
swing unit (e.g. quarter note), then the swing value can
just be interpolated over the values of the morph. A
particularly interesting timing issue is the case of a
“compound swing” that arises when morphing between
two rhythmic patterns that swing over different swing
units. In this case, the interpolated rhythm pattern timing
cannot be computed directly from an interpolated swing
ratio. Instead, time values of the events in the larger
swing unit must be computed first. Once the longer unit
event times due to swing distortion are known, the swing
distortions for the finer beat divisions can be computed.
Figure 4 illustrates how the morph is computed between
patterns with swing ratios being interpolated on two
different swing units simultaneously.

Pattern 1 - 3:1. Swing Unit = Quarter Note Pattern 2 - 5:1, Swing Unit = Eighth Note

|

Figure 4. Pattern 1 has a swing ratio of 3:1 on the
quarter-note unit only, while Pattern 2 has a swing
ratio of 5:1 on an eight-note swing unit only. The
compound swing time distortions for both the quarter-
note and the eight-note swing unites are shown at each
endpoint, and in the middle of the transition when the
Morph parameter = .5.

3.7. Morphing between different time signatures

The Rhythmorpher also allows morphing between
rhythmic patterns with different time signatures, but the
implementation differs from the way other parameters
are handled since interpolation of time signatures
doesn’t make sense.

Instead, two separate “morphed” rhythm patterns are
computed across the parameters for which interpolation
does make sense — one pattern for each time signature.
Although the two different time signature patterns will
be at constantly changing phases with respect to their

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

beat and bar locations, events are always synchronized
at 16 notes, the smallest time division in the
Rhythmorpher. Once the two different parametrically
morphed patterns have been computed, velocity values
can be interpolated between the two resulting patterns to
generate a value for the final output. Although the sense
of bar is lost in the middle of a morph between two time
signatures, some sense and feel of the different time
signatures does remain, and is correlated with the
position along the morph.

4. DISCUSSION AND FUTURE WORK

Although we have been able to generate a wide variety
of rhythmic patterns of different styles using the high-
level parametric representation described, we have not
yet been able to quantify the actual space of possible
rhythms the representation covers. It would also make
the Rhythmorpher more useful if patterns designed with
common step sequencers could automatically be put into
the representation used by the system. Finally, the next
obvious major step would be to integrate the
representation and generation of harmonic and melodic
content so that full musical transitions could be
automated.

5. CONCLUSION

We have designed and implemented a system where
polyphonic rhythmic patterns can be created and
seamless transitions be made between them despite
radically different musical characteristics. The
transitional patterns take on features of precomposed
rhythmic patterns as they move from one to the other.
Most importantly, the music produced during the
automated transitions is never jarring and can be set to
occur over any duration in real time.

6. ACKNOWLEDGEMENTS

This work was supported by project grant from the
GAMBIT program of the Interactive and Digital Media
Project Office, Media Development Authority of
Singapore.

7. REFERENCES

“Fmod - interactive audio middleware”

http://www.fmod.org/.

(1]

JET http://www.sonivoxrocks.com/jet.html

Slipgate Ironworks, “A4 Generative, Adaptive Music
System for MMO games", Proceedings of the Game
Developers Conference, Austin, 2008.

C.Bajakin. "Adaptive Music: The Secret Lies Within
Music Itself", Proceedings of the Game Developers
Conference, San Francisco, 2010.

323

[5] J. Harlin. “Ahead of the Curve” Game Developer
magazine, October 2008.

A. Pazos, A. S. del Riego, J.Dorado, J. R. Cardalda.
“Genetic music compositor”’, Proceedings of the
Congress of Evolutionary Computation 1999
(CEC’99) pp. 885-890, Washington, 1999.

N. Tokui and H.Iba. “Music Composition with
Interactive Evolutionary Computation”,
Proceedings of the 3 international Conference on
Generative Art, Milan, 2000.

A. Eigenfeldt. “The Creation of Evolutionary
Rhythms within a Multi-Agent Networked Drum
Ensemble”, Proceedings of the International
computer music Conference, Copenhagen, 2007.

A.R. Brown. “Exploring Rhythmic Automata”,
Applications on Evolutionary Computing, volume
3449, Berlin, 2005.

[10] A. Friberg and A. Sundstrom. “Swing Ratios and
Ensemble Timing in Jazz Performance: Evidence
for a Common Rhythmic Pattern,” Music
Perception: An Interdisciplinary Journal 19, no. 3
(April 1, 2002): 333-349.

[11] H. Honing and W. Bas De Haas, “Swing Once
More: Relating Timing and Tempo in Expert Jazz
Drumming,” Music Perception: An
Interdisciplinary Journal 25, no. 5 (June 1, 2008):
471-476.

[12] J. A. Biles. “GenJam: A Genetic Algorithm for
Generating Jazz Solos”, Proceedings of the
International Computer Music Conference, San
Francisco, USA, 1994.

[13] D. Huron and A. Ommen, “An Empirical Study of
Syncopation in American Popular Music, 1890-
19397, Music Theory Spectrum 28, no. 2 (October
1,2006): 211-231.

[14]F. Gouyon, L. Fabig, J.Bonada, “Rhythmic
Expressiveness Transformation of Audio
Recordings: Swing Modification”, Proceedings of
the International Conference on Digital Audio
Effects, London, 2003.

(6]

(7]

(8]

[9]

