
Real-time synchronization of independently controlled phasors

Lonce Wyse

National University of Singapore, Singapore
lwyse@zwhome.org

[1,0),(→tfreq]φ (2) Abstract
Phasors have a wide variety of uses in music and sound
synthesis. At audio signal rates, phasors can be used as
indexing functions for table oscillators. At control rates,
phasors can be used as clocks to control tempo and trigger
events. When simultaneous control over multiple phasors or
oscillators is desired, there arises a conflict between the
need to control their individual frequencies, and the need to
coordinate the phase relationships between the different
phasors. The problem is particularly acute in real-time
systems where a flexible mechanism for negotiating between
local and global control is necessary. This paper presents a
spline technique for quasi-independent control over phasor
frequency and phase, discusses the objects and interfaces in
an implementation, and presents several examples to
illustrate the utility of the system for signal and event
generation, and for synchronization in real-time networked
music environments.

We will also consider the “unwrapped” phase which is the
total number of periods executed by the phasor over some
duration t (during which the frequency may be changing
continuously). Taking the modulus 1 of the unwrapped
phase yields the “principle phase” in the unit interval.

Voice 1

Voice 2

t’

time t

1 Introduction
Figure 1. Time maps for two voices that intersect (are

“synchronized”) at two points during the interval shown.
The diagonal line represents a linear map with no time

warping .

The objective of the system described herein is to provide
a method for synchronizing independent phasor-based
musical or signal processes at specific points of time in a
real-time performance environment. Coordinating
independent musical voices at specific points in time has
typically been addressed using the idea of “time maps”
(Jaffe 1985, Honing 2001) or “time warping” (Dannenberg,
1997). The idea is to use time warping functions that map
linear time t to a “warped time” time t’:

When synchronizing phasors, it is only relative phase that
it is important, not the number of cycles accumulated from
some reference time (e.g. the beginning of a piece of music).
For example, consider two improvising musicians, each
with control over periodic musical sound-generating
algorithms (“models”) that are independently parameterized
in real-time. One of the model parameters controlled by
each musician is the frequency of a phasor that generates
events at specific phases in its cycle (Figure 2). To create
synchrony between the two independently controlled voices,
a time warping mechanism would only need to consider a
localized window of time rather than the entire history of
the piece.

 . (1) ')(ttf →

Voices are synchronized where their warping functions
intersect (Figure 1). A recent implementation of multi-voice
“tempo cannons” using time maps is discussed in Collins
(2003).

One aspect that differentiates the current work from
previous time map formulations is that the focus is on the
cyclic behavior of phasors. For the purposes of this paper,
we consider a phasor to be a function of time t that maps
periodically into the unit interval at a rate of freq cycles per
second:

We commonly think of a phasor as having two attributes,
frequency and phase. In the musical scenario described
above, both the frequency of the event generating processes
and the phase relationship between the two would be clearly

451

The warping functions that we will consider will map
time to the unwrapped phase of an oscillator. Thus a map
representing a phasor of constant frequency would appear as
a line from the origin with a slope equal to the frequency.
“Warping” amounts to deviating from the linear map to
achieve specific phases and frequencies at the endpoints.

The warping functions that we will consider will map
time to the unwrapped phase of an oscillator. Thus a map
representing a phasor of constant frequency would appear as
a line from the origin with a slope equal to the frequency.
“Warping” amounts to deviating from the linear map to
achieve specific phases and frequencies at the endpoints.

Event 2

Event 1
),,1(1 tθ

0 .5 1.0 .25 .75

)tθ

phasor values

Event 3

Pa er 1f φtt n 1

In musical applications, at both signal and event control
rates, a smoothness condition would typically be applied at
the beginning and the end of the transition so that there are
no sudden changes in frequency (or “tempo” if the phasors
are triggering events). That is, we would like to specify the
frequency of the phasor at the endpoints of the transition,
and would most often choose the starting value to be equal
to the frequency at the point when the transition was called
for, and the endpoint to be equal to whatever frequency we
want the phasor to continue with following the transition.
Since the mapped value represents phase, and the derivative
phase is the frequency, this amounts to the desire to specify
the derivative of the mapping function at the endpoints.

In musical applications, at both signal and event control
rates, a smoothness condition would typically be applied at
the beginning and the end of the transition so that there are
no sudden changes in frequency (or “tempo” if the phasors
are triggering events). That is, we would like to specify the
frequency of the phasor at the endpoints of the transition,
and would most often choose the starting value to be equal
to the frequency at the point when the transition was called
for, and the endpoint to be equal to whatever frequency we
want the phasor to continue with following the transition.
Since the mapped value represents phase, and the derivative
phase is the frequency, this amounts to the desire to specify
the derivative of the mapping function at the endpoints.

,2,2(2 f φPattern 2

Figure 2. Two independently controlled cyclic patterns
with events triggered at specific phasor values. Because
the patterns are cyclic, there is no single reference time

for synchronization. Instead, a reference is chosen in
real-time and warping depends only on phase.

for synchronization. Instead, a reference is chosen in
real-time and warping depends only on phase.

perceptible. Of course, the two attributes are not
independent since frequency is just the rate at which phase
changes. The only parameter the musicians have available
for controlling the synchrony between their individual beat
patterns is the frequency of their respective phasors. Skilled
musicians would generally be able to maintain any
particular phase relationship by continually adjusting their
respective frequency parameters (at the expense of
maintaining the exact frequency target). However, a more
difficult task would be for the two musicians to synchronize
both the frequency and phase at a specific forward point in
time that was itself determined in real-time. The task is
difficult precisely because there is no independent control of
frequency and phase. Even if the musicians were computers,
how can a real-time system provide the sense that both
frequency and phase are under independent control so that
specific frequency and phase configurations can be achieved
at specific points in time? This is the task to which the
technique described in this paper is addressed.

perceptible. Of course, the two attributes are not
independent since frequency is just the rate at which phase
changes. The only parameter the musicians have available
for controlling the synchrony between their individual beat
patterns is the frequency of their respective phasors. Skilled
musicians would generally be able to maintain any
particular phase relationship by continually adjusting their
respective frequency parameters (at the expense of
maintaining the exact frequency target). However, a more
difficult task would be for the two musicians to synchronize
both the frequency and phase at a specific forward point in
time that was itself determined in real-time. The task is
difficult precisely because there is no independent control of
frequency and phase. Even if the musicians were computers,
how can a real-time system provide the sense that both
frequency and phase are under independent control so that
specific frequency and phase configurations can be achieved
at specific points in time? This is the task to which the
technique described in this paper is addressed.

Precomputed mapping functions are not possible for this
task because of the requirement of being able to specify the
endpoint derivatives at run time. What is needed is a simple
and efficient method for computing the time-to-phase
mapping functions on the fly that permit us the desired
specifications of transition duration, start and end point
derivatives, the number of total phasor cycles, and some
way to control the maximum deviation of the warping.
Clamped cubic splines fit the bill precisely.

Precomputed mapping functions are not possible for this
task because of the requirement of being able to specify the
endpoint derivatives at run time. What is needed is a simple
and efficient method for computing the time-to-phase
mapping functions on the fly that permit us the desired
specifications of transition duration, start and end point
derivatives, the number of total phasor cycles, and some
way to control the maximum deviation of the warping.
Clamped cubic splines fit the bill precisely.

Splines are a technique for interpolation between known
values of a function f at a sequence of points: f(x1), f(x2)
…. f(xn), with polynomials between each pair of points. A
cubic spline is constructed of third-order polynomials
between the specified function values. A clamped cubic
spline uses specified derivate values at the endpoints. The
qualities of clamped cubic splines that are useful in the
musical time map context are:

Splines are a technique for interpolation between known
values of a function f at a sequence of points: f(x1), f(x2)
…. f(xn), with polynomials between each pair of points. A
cubic spline is constructed of third-order polynomials
between the specified function values. A clamped cubic
spline uses specified derivate values at the endpoints. The
qualities of clamped cubic splines that are useful in the
musical time map context are:

2 Real-time time warping 2 Real-time time warping • they are smooth in the first derivative, and
continuous in this second at the endpoints as
well as all points in between. Musically, this
means there are no abrupt frequency/tempo
changes,

• they are smooth in the first derivative, and
continuous in this second at the endpoints as
well as all points in between. Musically, this
means there are no abrupt frequency/tempo
changes,

One way to provide quasi-independent real-time control
over both frequency and phase in real time is to expose both
attributes as parameters that control “target values” and then
permit the system a certain (specifiable) duration of time in
which to achieve the targets. The system would have the
freedom to automatically manipulate the frequency over
time so that the desired phase is reached at the exact point in
time specified by the duration. During the transition
interval, the frequency will have to be different from the
target frequency, and in general, continuously changing.
However, if the system is designed so that the transition
time is short, and the frequency is constrained to deviate as
little as possible from its target, then the sense of real-time
frequency control need not be lost as phase control is
gained.

One way to provide quasi-independent real-time control
over both frequency and phase in real time is to expose both
attributes as parameters that control “target values” and then
permit the system a certain (specifiable) duration of time in
which to achieve the targets. The system would have the
freedom to automatically manipulate the frequency over
time so that the desired phase is reached at the exact point in
time specified by the duration. During the transition
interval, the frequency will have to be different from the
target frequency, and in general, continuously changing.
However, if the system is designed so that the transition
time is short, and the frequency is constrained to deviate as
little as possible from its target, then the sense of real-time
frequency control need not be lost as phase control is
gained.

• the function achieves the specified values
(phasor values) exactly at tabulated points,

• the function achieves the specified values
(phasor values) exactly at tabulated points,

• the “clamped” conditions that give this type of
spline its name are the slopes of the function at
the end points, which correspond to the
frequency of the phasors at the beginning and
end of the transition period,

• the “clamped” conditions that give this type of
spline its name are the slopes of the function at
the end points, which correspond to the
frequency of the phasors at the beginning and
end of the transition period,

• the computational effort for solving the system
to create the spline function is linear in the
number of tabulated points.

• the computational effort for solving the system
to create the spline function is linear in the
number of tabulated points.

452

Details on how splines are computed can be found in
standard texts (cf. Press et al., 1988). Once the spline map
has been computed following a real-time parameter change,
then the warped function value is available continuously at
any x value between the specified endpoints.

3 Phase tracking
“Tracking” is the term we use for the process of adjusting

phasor frequency continuously over time to reach specific
frequency and phase values. A phasor with tracking
capabilities has been built into a pure Java library and real-
time synthesis system described in Wyse (2003). The phasor
object and application programmer interfaces (API’s) are
described briefly below because they illustrate some of the
issues that arise in synchronizing phasors in real time.

Phasor objects are initialized with a sample rate, sr, and
controlled with a frequency parameter, freq. After
initialization, the phasor is “sampled” by calling the Phasor
“tick()” method which will advance the phase by freq/sr and
return the new phase value.

To initiate the synchronization transition, phasors objects
have a family of trackX() methods. When they are called, a
spline function is created to the specification supplied in the
trackX() argument list. The phasor goes into a “tracking
mode” that lasts for the duration specified to achieve the
desired phase and frequency. During that time, the advance
of the phase value in response to the “tick” method is
determined not by the normal phasor frequency parameter,
but is set on a sample-by-sample basis by the spline function
values until it has achieved the desired end phase and
frequency after exactly the specified duration.

Different trackX() methods allow for different ways of
specifying the desired behavior during the spline
interpolation interval:

• trackCycles(numcycles, targetfreq, duration) –
rotates through an exact (real-valued) number of
cycles over the specified duration and clamps the
slopes at the spline endpoints to the current phasor
frequency at the beginning, and the targetfreq
argument at the end. This method is typically
called by other trackX() methods, rather than sound
model programmers because it requires the caller
to know current phases, and compute the desired
number of cycles necessary to arrive at the
implicitly desired phase that will create synchrony
across different phasors.

• trackPhase(targetphase, targetfreq, duration) –
this method affords a more user-friendly argument
list and internally computes the actual number of
cycles the phasor must execute over the duration to
arrive at the desired target phase and target

frequency. Of course, the number of cycles to
execute is not defined without further conditions
because for any real-valued number of cycles that
satisfies the argument conditions, adding an integer
number of cycles will also satisfy the conditions.
The actual number of cycles is computed as the
average of the starting and ending frequencies
times the duration, and is then adjusted the minimal
amount to meet the phase requirement. Note that
the phase adjustment might be positive or negative;
the one of smaller absolute value is chosen for
minimum frequency perturbation.

• trackPhase(targetphase, targetfreq, duration,
direction) – the same as above, except the
adjustment for phase is forced to go in either the
positive or negative direction. This turns out to be
particularly important when the total number of
cycles is small and carried out over control/event
time scales.

• trackPhase(ref_freq, ref_phase, target_phase_rel,
targetfreq, duration) – another convenience
method that allows phase synchronization to a
(fixed-frequency) reference phasor. This interface
permits a conceptualization of the synchronization
process in terms of musical beats rather than clock
time.

3.1 Traveling Backwards
Jaffe (1985) disallowed time maps with negative

derivates – those that represent traveling backwards through
the score. In our case, this corresponds to running a phasor
with negative phase increments. Mappings considered here
are from real-time to phase values, and never the other way
around. The need for representing or computing inverse
maps does not arise as it does when computing maps from
score time (Dannenberg, 1997), so there is no other reason
than a composer’s intentions for preventing negative
derivatives. However, if we allow negative derivatives to be
computed in a real-time system, then some extra care is
required, particularly at the slow time scales that typically
control events. The danger is that with parameters changing
in real-time, continuously recomputed time maps that permit
negative derivatives can result in the process repeatedly
“scratching” over a particular phase region and rapidly
retriggering any events that are hooked to phases in the
region. With cubic splines, this situation arises quite
commonly in practice when slowing down an oscillator
where the phase advancement across the endpoints is small
and the derivative (frequency of the phasor) is the same at
both endpoints (Figure 3). The minimal order cubic spline
tends to create the characteristic S shape with a negative
derivative between the two extrema.

There are two ways that the problem can be addressed.
One is to increase the order of the spline so that there are

453

more segments. This adds to the computation since the
spline needs to be recomputed for every parameter update
(which in the situation described is frequent). Notice that in
cases where the negative derivative happens over phase
values that are not associated with events, then the shape of
the map function is not manifested sonically at all. A

negative phase increment

t’
(a)

time t

Figure 3. When the phase advancement over the
duration of the spline is small, the cubic s-shaped

interpolator can generate a negative slope causing the
phasor to to run in reverse. If there is any sounds or

events tied to the phase values in this range, this leads to
“scratching” repeatedly over them .

straight-forward way to avoid the dangers of changing the
direction of phase increments is to simply use the low-order
spline with its negative derivative, but fix the value of the
event phasor during these periods until the spline tick()
method returns phases that represent positive increments
again. In this situation, this strategy prevents scratching as
effectively as increasing the order of the spline, but without
the additional computational burden.

(b)

Figure 4. Two Lissajou figures each with frequency(x) =
2*frequency(y) a) with a 0 phase difference between the

two sinusoidal indexing functions at time t=0, and b)
with a pi/5 phase difference between the two indexing

functions at time t=0.

this case, the shape of the Lissajou figure, and thus the
elements being read from the 2D wavetable, depends
significantly on the phase difference between the two
indexing oscillators (Figure 4a,b), and the “natural”
parameter for controlling the system becomes phase rather
than frequency.

4 Musical Possibilities
Wave terrain synthesis (cf. Roads, 1996) is one example

of a signal-rate application that can benefit from the ability
to manipulate phase and frequency quasi-independently.
Wave terrain synthesis uses a 2D table as a transfer
function, and a 2D indexing function. A common indexing
method is a Lissajou function, a curve generated by two
sinusoidal oscillators; one that determines the x-coordinate,
the other that determines the y-coordinate used for reading
an interpolated value from the 2D wavetable (Figure 4).

It may be that short transition times and minimal frequency
deviation is not the desired use for this synchronization
mechanism. Long slow transition times between
synchronization points can be put to wonderful musical
effect as demonstrated by, for example, Colin Nancarrow’s
Player Piano Study #21. This piece is for two voices with a
cyclic event pattern, and uses the entire 3 minute duration of
the piece to make the transition from the event phase
synchronization at the beginning to that at the end.

We can think of the indexing oscillators as sinusoidal
functions of phasor values in order to use the concepts and
implementation described above. If the phasor-determined
frequencies of the two indexing oscillators are not related by
an integer multiple, then the resulting Lissajou figure
appears to be a 2-D projection of a contour rotating in 3
dimensions. Specifying phases at particular points in time
only shifts the resulting sound in time. However, if the
frequency of one oscillator is an integer multiple of that of
the other, then a stable 2-D path is traced periodically. In

These phasor synchronization techniques can be used
musically in a way analogous to “keyframes” in animation.
Consider multiple voices, each generating a periodic pattern
of events; a simple example would be a set of church bells
each with their own pitch and period. Keyframes in this
context are specific patterns across voices such as different

454

arpeggios. A performer could then, in real time, choose one
of the predefined keyframes, and set a time interval during
which the individual voices would all have their periods
minimally adjusted so that after the specified time, the
keyframe event pattern would be produced. Spline maps
defined only by two endpoint values and slopes produce an
“ease in, ease out” effect that is frequently useful musically,
and is also analogous to animation keyframing techniques.

Another important context for the real-time
synchronization capabilities described above is network
communications. With fast internet communications capable
of carrying live video and audio data, the prospect of
musicians who are physically located around the globe to
jam together becomes feasible. However, dividing half the
circumference of the earth (20K kilometers) by the speed of
light (300K km/s) we see that physics imposes a minimum
delay of 67 ms on audio communication at this distance. In
practice, network switching and buffering typically create
delays of longer than this. If the network is carrying only
low-bandwidth parameters for the remote control of
synthesis (rather than audio signals), then jitter in the timing
also becomes an issue. These factors would seem to make
tight synchronization between distant musicians impossible.

 One solution takes advantage of new relationships
between performance gesture and sound events that are
being explored in contemporary music whether networked
or not. If the one-to-one mapping between gesture and
musical event that characterizes traditional instrument
performance is abandoned in favor of mapping gesture to
less time-sensitive parameters or second order timing
parameters, then satisfying remote real-time musical
collaborations can still be supported. If, for example, tempo,
syncopation, or cross-voice synchronization were the
parameters under control rather than individual events, then
absolutely precise timing between multiple event streams
controlled by remote performers is possible under any delay
and jitter conditions. Of course, there would still be limits
on precisely when synchronization would occur but not on
how precisely the synchronization could be achieved
between the remotely and locally controlled voices.
Performers on both sides of the network divide could be
sure of the results of their performance actions, and that they
were having the same audio experience as that of their
distant counterpart.

5 Summary
A method of giving performers a sense of independent

control in real-time over both the frequency and relative
phase across multiple phasor-driven processes was
presented. The method is akin to classic time maps
discussed in earlier literature, and is based on a clamped
spline interpolation that is specified with musically
meaningful parameters. An implementation and interfaces
were developed in a musical context, and examples at both
the signal and the event control rate show the utility of the
method in a variety of realistic real-time musical
environments.

References
Collins, N. 2003. A microtonal tempo canon generator after

Nancarrow and Jaffe. In Proceedings of the
International Computer Music Conference. Singapore:
International Computer Music Association.

Dannenberg, R. B. 1997. Abstract Time Warping of
Compound Events and Signals. Computer Music Journal
21(3), 61–70.

Jaffe, D. 1985. Ensemble Timing in Computer Music.
Computer Music Journal 9(4), 38-48.

Honing, H. 2001. From time to time: The representation of
timing and tempo. Computer Music Journal, 35(3), 50-
61.

Press, W.H., B. P. Flannery, S. A. Teukolsky and W. T.
Vetterling, 1992. Numerical Recipes in C, 2nd edition,
Cambridge University Press.

Roads, C. 1996 The Computer Music Tutorial. Cambridge,
Mass.: MIT Press, 163-167.

Wyse, L. 2003. A sound Modeling and Synthesis System
Designed for Maximum Usability. In Proceedings of the
International Computer Music Conference, 447-451.
Singapore: International Computer Music Association.

455

