
Interactive Audio Web Development Workflow

Lonce Wyse
Communications and New Media
National University of Singapore
lonce.wyse@nus.edu.sg

ABSTRACT
New low-level sound synthesis capabilities have recently become
available in Web browsers. However, there is a considerable gap
between the enabling technology for interactive audio and its
wide-spread adoption in Web media content. We identify several
areas where technologies are necessary to support the various
stages of development and deployment, describe systems we have
developed to address those needs, and show how they work
together within a specific Web content development scenario.

Categories and Subject Descriptors
H.5.5 [Information Systems]: Information Interfaces and
Presentation (HCI) – sound and music computing.

General Terms
Design; Human Factors

Keywords
Interactive Audio; W3C Web Audio API; Development tools;
Web development workflow.

1. INTRODUCTION
Interactive sound has recently been gaining attention in large part
due to new standards established by the World Wide Web
Consortium (W3C) and implemented on most major browsers
running on personal computers and mobile devices. The Web
Audio API is comprised of a set of low-level audio “nodes” that
can be connected to form signal flow audio graphs for real-time
synthesis and processing. The API also defines parameters for
influencing the behavior of the algorithms as they are executing
so that synthesis can be responsive in real-time to data generated
from sources such as graphical or user behavior.

In this paper, we describe three key components of a software
ecosystem that we view as critical to the workflow of developers
in order for the new interactive audio capabilities to work their
way in to the everyday experience of Web media for the masses.
The first is a library that supports the construction of audio graphs
with rich and complex sonic behaviors which is designed for a
specialist developer community that have a professional level of
both audio and programming skills. The second is a standard API
for interactive sound “models” that provides a simple and
powerful means for controlling sounds from applications designed
to be used by Web developers who are not audio specialists. The
third is a way of organizing and accessing sound models in a

database served from “the cloud” which minimizes complexity for
Web developers and provides broad and efficient distribution for
sound model developers. We describe strategies and
implementations for each of these three components, and then
demonstrate their utility in the context of a typical Web
development workflow.

2. SOUND MODELS
We use the term "sound model" (or simply "model") to refer to
parameterized algorithms for generating a class of sounds that run
in real time. They can be as trivial as a single oscillator or as rich
as an algorithmic piece of music, but typically they represent
objects (doors, car engines, bells, birds, musical instruments),
events (rolling, scraping, bouncing), musical processes (beat
patterns, melody generators), or abstract sound-generating
algorithms and equations (chaotic dynamical systems)[13]. In
popular graphical programming languages for interactive sound
such as Max/MSP [14] or PD[9], sound models are known as
"patches" in reference to the pre-digital technique of constructing
sounds by patching analogue sound generating and processing
modules together with cables. We use the term "sound" to refer to
a specific instance of an acoustic wave generated naturally or
synthetically that might be recorded and stored as a digital audio
signal file. Thus a sound model generates a class of sounds that
change depending on the parameter values that influence the
synthesis algorithm.

The recent Web Audio API[1] breaks new ground for sound
synthesis in W3C standards-compliant browsers. Previous to the
implementation of the new standard, audio elements (e.g.
recorded samples stored in files) could only be triggered, or else
could be synthesized in real-time only with browser plug-ins
presenting installation obstacles to users, security risks, and non-
native performance.

With the Web Audio API, developers use JavaScript to connect
audioNodes together into signal flow graphs that are managed by
an audioContext to generate sound in real time. There are very
few audioNodes available compared to the number of objects in
Max/MSP [14] which has in the neighborhood of one thousand
objects without counting those available from the community of
users. Nonetheless, some rich synthesis models can be
constructed, controlled with sample accuracy, and manipulated in
real time with the limited set of audioNodes already supported in
the Web Audio API. There are also audioNodes that perform
convolution and compute power spectra. Since all of the
audioNodes are built in to the browser, they are precompiled and
run at native speeds. They are also given their own thread,
separate from the browser UI thread, so that audio can reliably
deliver its stream of audio samples without glitches due to
blocking from user and graphical activity in the browser (See [11]
for more details about the capabilities and limitations of the
current Web Audio API).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
MM’14, November 3–7, 2014, Orlando, Florida, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3063-3/14/11…$15.00.
http://dx.doi.org/10.1145/2647868.2655064

1065

The developers who will be able to make use of the full potential
of the Web Audio API are skilled programmers with audio
knowledge, not typical Web developers. Even for audio
specialists, the Web Audio API is fairly "low level." For this
reason, we have developed the jsaSound library. jsaSound is a
JavaScript library designed to support common sound model-
building operations such as generating rhythmic patterns and
event loops, encapsulating models so that they behave like
audioNodes to be combined in more complex graphs[10], and for
hiding complexity when managing resources such as microphone
input or audio files. WAAX[4] is another example of a library
designed for simplifying sound model development with the Web
Audio API.

A key feature of the jsaSound library is support for creating and
exposing a consistent interface for users of sound models.

3. A SOUND MODEL API
Sound model parameters can vary greatly in terms of how they
affect a model, their natural units, and their names which ideally
reflect their function. For example, a “car engine” might expose
parameters for RPM, torque, and horsepower, while a “footsteps”
model might expose parameters for kilometers per hour, and gait
(running or walking)[5]. Similar to the Java plug-in synthesis
system ASound[12], jsaSound standardizes the parameter
interface by using the parameter name or index as an argument
and providing just two “setters”, setParam(id, value) and
setParamNorm(id, value). The former uses the natural units of the
parameter, and the latter takes values in [0,1] and maps them to
range defined for the natural units.. setParam (id, value) is also
used for string parameters such as file names. Thus the interface
for controlling interactive sounds is simply comprised of:

 play()
 release()
 setParam()
 setParamNorm()

Three additional methods are available for getting information
about the sound model:

 getParam(id, ["name", "type", "val", "normval", "min",
"max"])

 getNumParams() – the number of parameters a sound
exposes,

 getAboutText() –developer-supplied text descriptions

The simplicity of the scheme makes real-time interactive
control of sounds only incrementally more involved than playing
static sound files. The interface allows a Web developer to control
sounds “generically” (without needing specific knowledge about
individual sound models). It also enables for example, the
automatically-generated slider-box graphical interface "player"
provided with jsaSound (Figure 1). It facilitates sound model
reuse and sharing otherwise impractical with raw heterogeneous
Web-Audio API audio graphs stored as JavaScript objects or files.

Figure 1. Automatically-generated user interface using the
jsaSound model API. The Recording button is used to save
user-generated sounds; the Code Capture button generates
the JavaScript code for using the model interactively within

Web applications (see section 4. A Workflow Example)

4. ORGANIZING MODELS FOR ACCESS
Collections of sounds and music are typically licensed and
accessed from databases using textual descriptions for indexing.
Sometimes they are distributed as specialized collections, but
more often they are searched and “auditioned” on-line and then
downloaded individually. There is no such standard way of
distributing algorithmic sound models, because there has been no
standard system for creating and incorporating them in media
content. MIDI-controlled soundbanks and their variants are file
systems for instruments and sounds, but the sound sets all use a
single “general purpose” synthesizer. There are also several
aggregate collections of Max/MSP objects on the Web1, but most
of the sharing of algorithmic audio objects is done in an ad hoc
way directly between designers and users of common systems.
The standardization of the Web Audio API is likely to generate a
demand for a process of distribution for interactive sound models
analogous to those currently in place for static sound files.

To understand how sound models might usefully be organized,
accessed, and used in media production, it is interesting to
consider how large a useful collection of sound models might be.
For example, the Freesound collection[6] contains over 160,000
user-contributed sounds, and the Web-based commercial
SoundDogs collection numbers over 650,000. A sound model can
generate an uncountable number of sounds because it is
parameterized and furthermore, parameters can change over time.
This might suggest that a database of sound models would be
smaller than a corresponding sound file database of similar
breadth. However, there are many different ways to synthesize a
given sound, and the range of sounds that different models can
make may intersect even as each model provides quite distinct
behaviors under parametric variation. It is thus reasonable to
think of the size of a collection of models as being on the same

1 See for example, http://cnmat.berkeley.edu/downloads or

maxobjects.com.

1066

order as that of an analogous collection of sounds, and therefor
that some kind of database scheme would be necessary for
management.

There are some interesting opportunities and challenges that arise
with databases of sound models due to the characteristics that
differentiate them from fixed media elements such as sounds.
One opportunity that distinguishes sound model databases arises
because they are structured code rather than a "flat" string of data.
Model structure can be an important aspect of what a database
user is looking for, especially when designing a new model – it is
much easier to find useful chunks of code than to write them from
scratch. This has been explored extensively by Funkhauser and
colleagues in the domain of 3D models. For example, associating
high-level semantic feature descriptions with model structure
facilitates novice model design creation[3]. Similarity metrics
based on model structure can assist database navigation[8], and
model building can be accomplished in part by example[7]. A
second opportunity for model databases comes from the semantic
"meta data" that comes with the names of the parameters that a
sound model exposes. Possibilities include musical "pitch" for a
bell, "rate" (for footsteps), or "roughness" for s scraping action.
All could be usefully exploited for finding and associating sound
models. The challenge in constructing and indexing databases of
sound models is also in part due to the abstract nature of code.
How does one index a model that represents many sounds which
might be entirely unrelated perceptually, or that generates many
of its useful sounds only under real-time manipulation of its
parameters?

Indexing static sound files is more straightforward. The
Freesound database of sounds uses two different methods of
providing metadata for indexing. One is the sound name and
additional descriptive text provided by the sound file contributor.
The other is generated automatically by extracting audio features
based on a suite of signal processing routines[2] designed for this
purpose. Features such as spectral centroid, pitch, and roughness
are saved with the sounds and can be used to discover
relationships between sounds in the database that can be exploited
in, for example, "sounds like" searches.

Our first-pass approach to organizing and searching collections of
sound models is to do so indirectly through the sounds that they
generate. Model developers use the GUI player (Figure 1) to
generate as many different sounds as they feel is necessary to
represent the range of possibilities for the model, and then upload
the sound(s) to the Freesound database along with a text
description used for searches. Each sound in the Freesound
database has its own Web page with facilities for visualizing and
playing the sound, and for examining the textual data provided by
the contributor. Freesound supports HTML descriptions so that
the sound model developer can create a graphical button that
directly opens the player for the sound model responsible for
generating the sound the user found in the database. With the
sound model open in the player, users now have access not only
to the specific sound they found in the database, but the entire
class of sounds and behaviors that the model is capable of
generating through interaction.

4.1 Serving from the Cloud
"Serving sound models from the cloud" means having them
available on an Internet-connected server which can be accessed
as an extension to a file system. For the developer, having code
components stored at a location accessed the same way from
wherever software is being developed or deployed is convenient

and storage-efficient. Also, like other libraries that are often
served this way (e.g. Google code libraries2), the developer is
relieved of the responsibility for updates and bug fixes. One
drawback is that Internet access is always necessary, though for
Web applications this is generally assumed anyway. Another
drawback is a dependency on others for keeping the servers
available, as well as a loss of control over access (e.g. a malicious
provider could unilaterally change their access policy).

For the sound model supplier, cloud serving supports a variety of
licensing and distribution models, as well as the ability to
understand how and when sound models are being used by both
developers and by end users. This usage data can be valuable in
the same way it is for any other cloud-based service provider that
monitors and takes advantage of knowledge gleaned from usage
patterns to improve services. An overview of how the various
components work together can be seen in Figure 2.

Figure 2. System Overview

jsaSounds are served this way using the light-weight JavaScript
server stack based on node.js, express, and socket.io technologies.
The require.js library provides functionality that C-programmers
are familiar with as "#include." The Web developer-oriented
simplicity of interactive sound API can be seen in Figure 3.

5. A WORKFLOW EXAMPLE
The value of the complete ecosystem described above can be
appreciated by considering a workflow example.

A Web developer wants to animate an arrow shooting across the
screen with a speed dependent on where a user clicks. She decides
that the arrow needs a "swish" sound to accompany its flight that
must change according to how fast the arrow moves. That is, the
sound needs to be interactive with behavior tied to the motion of
the graphics.

She navigates her browser to the Freesound.org database, types
"swish" as a search term and auditions several of the 248 swish
sounds her search returned and chooses the one that has the sonic

2 https://developers.google.com/speed/libraries/

1067

characteristics she was looking for. Of course, the recorded sound
is not flexible in duration nor in the way it changes over time.
However, she notices the presence of a button announcing the
availability of the synthesis model that generated the swish, and
clicks it to bring up the model in the slider-box user interface. She
explores the model by moving the swish at various rates. She
could record any one of her swish gestures if she needed a static
sound different from the one the database search turned up, but
for her arrow application, she needs to use the model "live" in her
code to maintain its interactivity. She clicks the "generate code"
button (Figure 1) which opens a window with the JavaScript text
she needs to copy in to her program to load the sound from the
server, and to set the default values to those she chose in the slider
box. Her one remaining task is to start and stop the sound, and
insert a setParameter call wherever she updates the moving arrow
graphic, supplying that method with the arrow position. Now, for
both her during development, and for the end users who visit her
Web page, the sound will be retrieved from the server when the
Web page is loaded, and the sonic evolution of the swish will be
bound to the position and speed of the arrow.

Figure 3. A complete JavaScript browser application that
obtains a sound model from a server and provides real-time

user-interaction. Two different forms of the jsaSound
parameter setting API are also shown.

6. CONCLUSION
The new Web Audio API enables interactive sound synthesis with
native performance on any device with a browser. However, there
are different developer communities with different needs that
must still be addressed before the technology can be adopted on a
massive scale. The jsaSound library provides tools supporting
audio specialists in the development of sound models, as well as
a standard API for all models that make them reusable, sharable,
and straightforward to use for Web developers. Cloud service

makes them easy to integrate with the community-supported
Freesound.org database indexed by the sounds they are capable of
generating, as well as convenient to deploy in Web applications.
Remaining future work is just the development of hundreds of
thousands of sound models.

7. ACKNOWLEDGMENTS
Thanks to the Freesound.org team at the Universitat Pompeu
Fabra Music Technology Group, particularly Frederic Font and
Dmitry Bogdanov, for their insights on the inner workings of
Freesound. Thanks to Kumar Subramanian for his contributions to
jsaSound and to the many other contributors to open source Web
audio projects. Thanks to the Sonoport team for seeing the
potential of this work in the commercial world. Thank you to the
anonymous reviewers for helping to strengthen this presentation.

All software presented in this paper is open source and available
at animatedsoundworks.com:8001.

8. REFERENCES
1. Adenot, P., Wilson, C., and Rogers, C. Web Audio API.

2013. http://www.w3.org/TR/webaudio/.

2. Bogdanov, D., Wack, N., Gómez, E., et al. Essentia: An
audio analysis library for music information retrieval.
Proceedings of ISMIR, (2013).

3. Chaudhuri, S., Kalogerakis, E., Giguere, S., and Funkhouser,
T. Attribit: content creation with semantic attributes.
Proceedings of the 26th annual ACM symposium on User
interface software and technology, ACM (2013), 193–202.

4. Choi, H. and Berger, J. WAAX: Web Audio API eXtension.
Proceedings of New Interfaces for Musical Expression,
(2013).

5. Cook, P. Modeling Bill’s gait: Analysis and parametric
synthesis of walking sounds. Audio Engineering Society
(2002).

6. Font, F., Roma, G., and Serra, X. Freesound technical demo.
ACM (2013).

7. Funkhouser, T. Modeling by example. ACM Transactions on
Graphics 23, 3 (2004).

8. Kim, V.G., Li, W., Mitra, N.J., Chaudhuri, S., DiVerdi, S.,
and Funkhouser, T. Learning part-based templates from
large collections of 3D shapes. ACM Transactions on
Graphics 32, 4 (2013), 70.

9. Puckette, M.S. Pure Data: another integrated computer
music environment. Proceedings of the International
Computer Music Conference, ICMA (1996).

10. Subramanian, S.K. Taming the ScriptProcessorNode -
Codaholic. http://sriku.org/blog/2013/01/30/taming-the-
scriptprocessornode/.

11. Wyse, L. and Subramanian, S.K. The Viability of the Web
Browser as a Computer Music Platform. Computer Music
Journal 37, 4 (2013), 10–23.

12. Wyse, L. A Sound Modeling and Synthesis System
Designed for Maximum Usability. Proceedings of the 2003
International Computer Music Conference: 29th September-
4th October 2003, Singapore, (2003), 447.

13. Wyse, L. Generative Sound Models. Multimedia Modelling
Conference, 2005. MMM 2005. Proceedings of the 11th
International, (2005), 370–377.

14. Zicarelli, D. Cycling ’74. 2014. http://cycling74.com/.

require.config({
 paths: {"jsaSound": "http://animatedsoundworks.com"}
});
require(
 ["jsaSound/jsaModels/jsaFM"], // classic FM
 function (sndFactory) {

 var snd = sndFactory();

 window.onmousedown=function(e){
 snd.play();
 };

 window.onmouseup=function(e){
 snd.release();
 };

 window.onmousemove=function(e){
 //[0,1] normalized x/y mouse positions
 var normX = e.clientX/window.innerWidth;
 var normY = e.clientY/window.innerHeight;

 // setting "Modulation Index" by parameter name
 snd.setParamNorm("Modulation Index", normY);
 // setting "Carrier Frequency" by parameter index
 snd.setParamNorm(1, normX);
 };
 });

1068

