
Flexible Sound Effects

Lonce Wyse

 Institute of Systems Science, National University of Singapore
lwyse@iss.nus.sg, http://www.iss.nus.sg/People/lwyse/lwyse.html

Abstract

Despite exponential growth in the power of consumer computers and despite the dollars generated by the
“interactive” multimedia industry (particularly in the form of games), applications using more than trivially
interactive sounds are almost non-existent. To address this state of affairs, we have developed a) a collection of
controllable sound effects, b) a graphical interface for selecting sounds and controlling parameters in real-time, c)
an API for using the sounds in other applications, and d) a manager for timing and queuing simultaneous
embedded sound processes.
Our sound effects models are based on wavetable event patterns with table lengths and event rates that range
between sample-file playback on one extreme and granular synthesis on the other. Most of the interactivity is at
the level of controlling algorithms for event generation. The demonstration will focus on the range of sound
classes for which this representation is effective.

The noise instruments of Luigi Russolo were among the
first of a long line of ingenious contraptions used to
create sound effects to accompany theatrical and film
performances through the first half of this century.
Through the careful attention and skills of the
instrumentalist, sounds were intimately tied to the actions
on the stage or screen, and were naturally “realtime
interactive”.

The current state-of-the-art of sound in multimedia
typically involves the playback of prerecorded sounds,
and interactivity is limited to initiation and volume.
Furthermore, we are subject to waterfalls made of three
second loops, and crashes that sound exactly the same at
each occurrence. Our goal is to provide developers (non
experts in synthesis) with tools to build more realistic
audio experiences into any application on current
popular computer platforms.

While CPU speed and lack of operating system support
are obvious reasons why realtime general purpose
synthesis is not a part of most applications, there is an
equally fundamental non-technical reason for its absence,
and that is the lack of tools to bridge the gap between
sound synthesis and people who “don’t know much about
sound, but know what they like.” The usability issues of
sound control strategies and graphical and code
interfaces for embedding flexible sounds in applications
is addressed elsewhere (Wyse and Kellock, 1997). Here
we focus on sound modeling techniques.

Our approach has been to construct sounds via the
algorithmic generation of events. The atomic “events”
are wavetables, so the CPU is burdened with sound
construction primarily at the “event rate”. This is
significant, because our system is designed to be

embedded in applications that are typically CPU
intensive themselves, such as virtual environments and
games. We have been able to construct a wide class of
flexible sounds models within the event-generation
paradigm.

The justification for this approach to sound modeling
goes beyond computational costs. There are no sounds
that fall outside the domain of sound effects. Some
effects are not meant to be imitations of real-world
sounds (e.g. cartoon whooshes, bonks, etc.), but many
must not reveal a synthetic origin if they are to be
effective. Decades of research have been devoted to
developing digital synthesis techniques that produce
“realistic” musical instrument sounds. While steady
progress is being made with specific techniques for
specific sound sources or types, there is nothing that
approaches the generality and realism of using actual
recordings in wavetable synthesis (Figure 1).

Recorded sounds are not models, and they provide little
in the way of flexibility, but when constructing sounds
out of patterns of many events, we have access to the
parameters that control the event patterns. In general, the
shorter the “atomic” events are, the more control we have
over the constructed sound until we reach the far end of
this scale where we have the complete generality of
granular synthesis. Before we reach that extreme,
however, we can get interesting handles on sound
construction, and provide a degree of interactivity far
beyond current practice for a wide range of sounds.

F
le

x
ib

il
it

y

Realism

Synthetic
Modeling

Digital Audio

Wavetable Event-
pattern Synthesis

Figure 1: Recordings make up in realism what they lack in
flexibility. Purely synthetic techniques offer realism in only
isolated instances, and generally do so at great computational
expense.

Sound models are each crafted individually, and each
sound has idiomatic high-level control parameters. For
example, crowd sounds have a parameter specifying the
number of people, footsteps have a rate, and collisions
have a force. Sounds are classed in an object hierarchy,
but there is usually some code that must be written
specifically for each sound model. We have an ever
growing box of tools which is making development time
grow shorter.

Event-oriented sounds such as applause, machine guns or
bouncing objects are most obviously suited to this kind
of wavetable event pattern synthesis. Many of the sounds
use sets of wavetables that are similar. Applause, for
example, necessitates the use of roughly 25 separate
hand claps to avoid the “electronic” sound of perceivable
exact repetitions. In some contexts, microvariations in
pitch and timbre can also hide the fact that the same
wavetable is being used repeatedly.

Another class of sound types we have had success
modeling with these techniques are textured sounds. In
this category are waterfalls, wind, machinery, engines,
room tone, crowds, and traffic sounds. In most
multimedia applications today, generating statistically
stable sounds is done by creating loop points in a short
recording. Unfortunately, the ear is very sensitive to the
presence of such loops, the detection of which quickly
destroys any sense of realism. Statistical event
generating algorithms can be effectively used in most
situations where loops are currently a ubiquitous
technique.

Sounds that are perceived as single events (e.g. a gun
shot or a pencil breaking) can also be modeled using
synchronous or overlapping multiple wavetable events
[1,2], with flexibility being the prime advantage over
simple audio playback, (memory usage could even be
greater than a single event recording). Sounds that are
more difficult to model are those that do not have enough
texture variation to permit undetected event changes (e.g.
the whirr of a drill). Sounds that are impractical to model
this way are those that have complex characteristic
temporal sequences across many attributes (e.g. speech).

Game developers, use the GUI to choose a sound (type)
from the database, and then alter the sound until it is
what they are looking for. The parameterized sound
model can then be saved, and loaded into the game
environment where application object behaviors can be
hooked to sound parameters. For example, the speed
with which the user is moving through space might
control the rate (and style) of footsteps, and different
surfaces encountered (eg. carpet and stone), could
control the character of the sound. Like in the good old
days of sound effects artists, sound makers can once
again “watch” behavior and respond appropriately.

Constructing sound models as flexible wavetable event
patterns is perhaps more of a craft than a science, but
interesting still, as every sound presents different
challenges. Although it is a shortage of CPU cycles that
provided the original motivation, the expressive power of
the method suggests that it will be useful even when
purely synthetic techniques run fast enough to be part of
an embedded real time sound engine. The “atomic”
elements of the models are generally easier to synthesize
and then combine than the composite sound is to directly
synthesize, and they don’t need to be continuously
recomputed. The “endless variation” that breathes life
into these sounds comes very cheaply with computations
only at the event rate.

References

[1] Horner, A, J. Beauchamp, and L. Haken. (1993).
“Methods for multiple wavetable synthesis of
musical instrument tones.” Journal of the Audio
Engineering Society 41(5):336-356.

[2] Roads, C. (1985). “The realization of nscor,” in
Composers and the Computer, edited by C. Roads
(A-R Editions, Madison).

