

BRIDGES FOR NETWORKED MUSICAL ENSEMBLES

Lonce Wyse Norikazu Mitani
Communications and New Media Programme

National University of Singapore
Arts and Creativity Lab, IDMI

National University of Singapore

ABSTRACT

Bridges is a software system designed to support
composition and performance for networked musical
ensembles. Bridges facilitates dynamic connections
between a variety of devices, applications, and individual
musical objects within multiple applications. The focus is
on colocated performers, and on control data and
communication structures rather than on audio delivery. It
manages addressing and mapping between components
making instrument design and networked compositions
more object oriented, reconfigurable, and portable.
Bridges is designed to support research in to new kinds of
musical activity, particularly communication between
performing musicians, mappings between interfaces and
sound synthesis, and most importantly, dynamic network
and control structures.

1. INTRODUCTION

Music is generally a social activity in which people come
together to play at the same place and/or time. Ensemble
musicians traditionally communicate with each other by
sound, sight, and touch. Today, computer and
communications technologies intervene at many stages
between musicians, instruments, sound, and audience. On
one hand, the “great acousmatic dislocations” of time,
space, and mechanical causality [5] disrupt the traditional
modes of communications between ensemble members,
and are not necessarily overcome by live performance. On
the other hand, access to these mediating chains of
communications and control structures by composers and
performers opens tremendous opportunities for new kinds
of musical activity. At the center of all of these musical
communication issues is the network.

1.1. The Network

In the late 1970’s, the musicians who would form the
League of Automatic Music Composers connected
computers together in a network for live performance [2].
Today, networks are more user friendly, and the collection
of tools for making music over networks continues to
expand. Max/MSP [4], PD[7], ChucK[9], Supercollider[6],
and others all have the basic capability to communicate

through sockets and ports to other local or remote
applications typically using the Open Sound Control
(OSC)[11] messaging protocol.

However, the potential of networks could still be made
more accessible for musical exploration. For example, IP
addresses and port numbers of specific instruments or
processes must be still be known by the composers and/or
performers in order for communications to be established.
One problem with this is that IP addresses change from
machine to machine and from performance to performance.
It would save composers time and provide new
performance capabilities if musical objects could interact
“directly” with each other obviating the need for musicians
to worry about the network infrastructure details.

Another problem that arises at both composition and
performance time is that different devices use different
messaging protocols and conventions for parameter ranges.
For example, MIDI uses 127 integers, a phone
accelerometer may have an individual manufacturer-
defined range, while software instruments might use
different units such as kilometres-per-hour, pressure in
dynes, etc. Composers must know prior to performance
time what controls will be mapped to what receivers and
spend time preparing the maps. This issue is a serious
impediment to the ideal of permitting controllers or
instruments to simply plug in to the network at
performance time and begin exchanging musical
information.

Here we describe Bridges - an application that hides
unnecessary network infrastructure information from
composers and performers, allows performers to
dynamically make connections between objects on the
network, performs automatic mapping to match
sender/receiver parameter operating ranges, and provides
access to information about, and interaction with, the
whole network architecture. Our goal is to give the
ensemble communications network itself “first class
object” status so it that can be easily manipulated for
musical purposes, or played like other instruments, while
at the same time preserving direct communication between
musical objects.

1.2. Related Work

There have been several applications designed to connect
musical objects over the net that have some of the same

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

443

functionality as Bridges. NRCI [3] is an open-source suite
of PD tools with common objects defined for interfaces,
timing generators, controllers, synthesizers, and
processors. It uses an OSC-based all-client (no central
server) broadcast messaging protocol. Clients can request
or offer specific types (pitch, amplitude, rhythmic) of data,
but for sending data, message formats need to be agreed
upon in advance or negotiated at performance time.

Although much broader in scope, the Diamouses [1]
project has some similarities with Bridges, particularly in
that it uses a hybrid of coordinated information and peer-
to-peer strategies.

Osculator [8] contains many of the mapping features
that Bridges contains, but it is OSX-specific, and does not
have the flexibility for real-time network reconfiguration
that the Bridges is designed for.

2. COMPONENTS OF BRIDGES

A representational hierarchy defines relationships between
important components in the system (Figure 1).

Figure 1. Logical hierarchical structure of components
relevant to the Bridge.

A “performer” is a musical human being, and there can be
zero or more performers per machine on the network, each
interacting with some subset of audio/video applications
and physical devices connected on a machine.

The next layer is occupied by Application Connectors
which communicate information with the Bridge about
application objects, and define the port and connection
type (e.g. UDP,TCP, or MIDI) that will be used for
communication. There can be many applications, and thus
application connections, used by a single performer.

At the next level we have the “mobject” (musical
object). A “mobject” represents a synthesis algorithm,
instrument, a virtual or physical controller, a sound
transformer, or even a graphical structure – anything
capable of sending or receiving control signals as part of a

musical environment. Every application connector can
have multiple mobjects.

At the forth level is the “parameter”. Parameters
represent the inputs and output that mobjects make
available for interaction. Every mobject can have multiple
input or output parameters.

At the fifth level are parameter “arguments”. Some
audio/video application or devices will send multiple data
at one time. A single “parameter” can be
multidimensional, and thus have multiple arguments for
sending or receiving multidimensional musical control
data.

A Bridge itself is run one per machine. Mobjects, via
parameter arguments, exchange control signals with each
other both locally and on networked machines (Figure 2).

Figure 2. Example network consisting of three Bridges.

A Bridge engages in two types of communications with
the clients on its local machine. One mode is for
configuration where the client informs a Bridge (and thus
the networked world) what objects it has available for
sending and/or receiving musical controller data. The other
mode is for sending streams of musical controller data
which get mapped and routed in a peer-to-peer fashion
with other clients on the network (via their own local
Bridges). The two modes are engaged simultaneously
during performance, but they contain different kinds of
information, and use different ports for communication:

1) Configuration commands (via GUI or messaging)
a. register mobjects and mapping info,
b. make connections between mobjects.

2) Music controller data exchange (via messaging)
a. exchange data between mobjects.

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

444

2.1. Configuration Commands

The configuration command mode is where the Bridges
application demonstrates its unique capabilities since this
is the mode used to modify the communications
architecture. Application connector configurations,
mobject names, parameter attributes, argument data ranges,
and connections between sender and receiver arguments
are all specified using the configuration mode.

Bridges provides two equivalent ways for specifying
configurations. One is through a graphical user interface
(GUI) and the other is through a messaging protocol. Both
methods provide the same configuration functionality. The
GUI is necessary primarily for dumb object providers such
as MIDI devices that are unable to specify metadata about
themselves or network architectures. The messaging
protocol is most useful with programmable applications
and when the network structure is dynamic during
performance. Configuration messages can be controlled
programmatically so that the network architecture can be
manipulated as fluidly as any other musical components.

Two messaging schemes are supported for the
configuration mode: OSC (via UDP) and TCP (under
development for communication with Adobe Flash
applications).

2.2. Music Controller Data Exchange

The second mode of communication is for the exchange of
controller data to and from mobjects via parameter
arguments. The role of a Bridge is to route and map the
messages between mobjects according to the sender and
receiver connections that have been configured via the GUI
or configuration messages. For music controller data, three
protocols are supported: OSC (via UDP), TCP sockets, and
MIDI. When connections are made between mobjects in
applications that use different protocols, Bridges
automatically translates from one to the other. It also
automatically maps between the different numerical ranges
that the various senders and receivers have registered.

Each application that uses Bridges to manage
communications only has to know ports, protocols, and
parameter ranges of its own components that it registers
with a Bridge. Connections to networked components are
then done only by name, while Bridges manages the
infrastructure details. In this way, a mobile phone
accelerometer registered as an OSC-formatted data sender
using the range of [-64,63] can connect to an receiver
object registered with a Bridge as a MIDI device by name
only, and not worry about ports, message protocols or
parameter ranges.

2.2.1. MIDI messages

The legacy structure of MIDI messages requires a little
special attention so that it fits into the GUI and mapping
structures of Bridges. This is because the messages contain

several fields that can each be interpreted either as
controller data to be routed, or as information that should
determine how other fields in the message should be
routed. The composer or performer can thus ether chose to
filter the messages based on data in a field, or get the data
in a field for routing. If they chose to filter it, they chose
the range of data for that field that will permit the other
parts of the message to be routed. If they want to rout the
data in a particular field, the field is connected to am
mobject receiver parameter argument like any other.
(Figure 3). In this way incoming MIDI data can be routed
depending on channel or controller number, and even
different note numbers could be filtered so that the velocity
data in the same message could be sent to different receiver
objects.

Figure 3. MIDI message contain several fields of data that
can be used to filter the message, or can be used as data to
be routed.

Because of the GUI for creating the architecture, and the
automatic mapping between ranges and messaging
protocols, Bridges is a useful stand-alone tool for
connecting arbitrary devices and applications running or
connected to a single machine. However, other tools (e.g.
Osculator) already provide some of these capabilities. The
most important musical potential of Bridges lies in its
ability to work in a network of Bridges.

2.3. Bridges Networks

In the local subnet version of Bridges, changes made to the
architecture at any of the individual Bridges are shared
with all the others via a UDP broadcast message. In this
way, all Bridges have the same information about the
network architecture. This information includes host, port,
object and parameter names and ranges for all available
objects - everything necessary for the Bridges to establish
and execute controller data exchange which is carried out
peer-to-peer with specifically addressed UDP messages.
This hybrid broadcast plus peer-to-peer strategy is well
suited for the two kinds of information that needs to be
communicated – configuration data that is coordinated
across machines, and control data between mobject
parameter arguments.

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

445

2.4. Playing the Network

We designed Bridges to support research and creative
explorations in the musical use of networks. We were
inspired by the early Hub experiments with various
architectures, connection patterns, and social/control
relationships between ensemble members. All performers
have GUI and programmatic access to change any part of
the network configuration at all times, not just the
connections that involve their own local mobjects. This
unrestricted reconfiguration capability allows for the
widest variety of strategies and network topologies [10] to
be implemented.

Connection messages can also be grouped as “scenes”
which represent the entire network connection structure.
Any Bridge can capture or send scenes at any time. This
lends itself to interesting improvisational possibilities as
well as compositional structuring. For example, the
ensemble could navigate through a sequence of musical
sections each embedded in a different network architecture.

Because of the management of infrastructure details,
new ensemble members with their own client machine, and
previously unknown applications or devices, can also join
and leave the network at any time.

2.4.1. Visualization

Network visualization is an extremely important role
Bridges plays beyond the interface it provides. If the object
names and connections displayed in the GUI are
inadequate for a given musical goal, a Bridge is also
capable of responding to requests from local applications
to provide them with a snapshot of the network. This is
provided so that further research can be conducted into
representations and interfaces for fluid musical networks
where new kinds of communication between ensemble
members are needed.

3. SUMMARY

We have developed an application that facilitates
dynamic performance-time connections between devices
and applications whether connected locally or on a
network. Bridges manage infrastructure details,
automatically map across messaging protocols and
numerical ranges, and provide both a graphical and a
programmatic means for getting information about the
network as well as for manipulating its structure. The tool
makes it easy for composers and ensemble performers,
programmers and nonprogrammers, to explore the
potential of the networks for new kinds of music making.

The primary reason we developed Bridges is to enable
access to the “web of mutual influence [2], so that all kinds
of communications and control strategies between and
among instruments, algorithms, and musicians, can by
explored. Thus, visualization and representation for
ensemble performance are key areas for further

exploration. We are particularly interested in these issues
given the temporal, spatial, and causal dislocations that can
result from arbitrary chains of mediation between musical
gesture, an issue compounded by the dynamic network
structures Bridges supports.

We view this as an early-stage development in a dialog
with composers and performers. Bridges is available at
artsandcreativitylab.org.

4. REFERENCES

[1] Alexandraki,C, Koutlemanis, P, Gasteratos, P,
Valsamakis, N., Akoumianakis, D., Milolidakis G.
“Towards the implementation of a generic
platform for networked music performance: The
DIAMOUSES approach”, in Proceedings,,
International Computer Music Conference Belfast,
Northern Ireland, 2008.

[2] Brown, C., and Bischoff, J. "Indigenous to the Net:
Early Network Music Bands in the San Francisco Bay
Area", 2002.
http://crossfade.walkerart.org/brownbischoff/

[3] Burns, C., and Surges, G. "NRCI: Software Tools for
Laptop Ensemble." Proceedings, International
Computer Music Conference Belfast, Northern
Ireland, 2008.

[4] Cycling ’74, Max/MSP. 379A Clementina Street, San
Francisco, CA 94103.

[5] Emmerson, S., “‘Live’ versus ‘real-time’”,
Contemporary Music Review, 1994, 10(2), 95-101.

[6] McCartney, J. “Rethinking the computer music
language: SuperCollider”, Computer Music Journal,
26, 2002, pp. 61–68.

[7] Puckett, M. Pure Data. http://puredata.info

[8] Troillard, C. Osculator. http://www.osculator.net

[9] Wang, G. and and Cook. P. “ChucK: A Concurrent,
On-the-fly, Audio Programming Language”, in
Proceedings, International Computer Music
Conference, Singapore, 2003.

[10] Weinberg, Gil. “Interconnected Musical Networkes:
Toward a Theoretical Framework”, Computer Music
Journal, 29, 2005, pp. 23-29.

[11] Wright, M., and Freed, A. “Open Sound Control: a
new protocol for communicating with sound
synthesizers”, Proceedings of the International
Computer Music Conference, Thessaloniki, Greece,
1997.

Proceedings of the International Computer Music Conference (ICMC 2009), Montreal, Canada August 16-21, 2009

446

