
_466 _467

  

 
stance is one that favours ease of use, it is possible that 

this may significantly impoverish the quality of long 

term evolving interaction.  

Results also suggest there may be an advantage for 

DMI musicians to work together in duos or possibly 

ensembles. Although it is not known whether the 

benefits are there for larger groups, perhaps playing, 

practicing and performing in a duo may have the 

potential to double expressive capability. 

5. CONCLUSION 

The investment of play constitutes a music-centered 

interaction between a musician and DMI system. An 

investment of play yields:  

 

• Conceptual transfer 

• Performatory i.e. adroit, fluent action  

• Refined musical expression 

• Elements of personal style 

• Reproducible interaction 

 

The Bent Leather Band studies suggest that 

expression is proportional to the amount of invested 

play. In turn this interaction is an artistic process 

governed by the DMI system’s affordances. These 

affordances are cyclic and processional, their 

contribution cumulative over time. They are manifest 

and latent within the DMI’s controller interface, 

software mapping and music. These affordances can be 

identified and harnessed for future DMI system 

iterations, modifications and establish new generations 

of instruments. 

This paper’s findings suggest that existing DMI 

frameworks may need to address the investment of play 

into the process of DMI design, its correlation to 

musical expression and software mapping. The 

investment of play has potential to enrich human 

computer musical interaction through development of 

performance skill and musical expression.  

6. REFERENCES 

[1] Birnbaum, D, R Fiebrink, J Malloch, and MM 

Wanderley. “Towards a dimension space for 

musical devices.” Proceedings of the 2005 

conference on New interfaces for musical 

expression, 2005: 192-195. 

[2] Dobrian, C, and D Koppelman. “The 'E' in NIME: 

musical expression with new computer interfaces.” 

Proceedings of the 2006 conference on New 

interfaces for musical expression, 2006: 277-282. 

[3] Favilla, S. and Cannon J. “Children of Grainger: 

Leather Instruments for Free Music” Proc. NIME, 

Jan 2006. 

[4] Gaver, W. “Technology affordances.” … in 

computing systems: Reaching through technology, 

Jan 1991. 

[5] Gibson, J.J. “The ecological approach to visual 

perception.” New York: Houghton Mifflin, 1979. 

[6] Gurevich, Michael, Paul Stapleton, and Adnan 

Marquez-Borbon. “Style and constraint in electronic 

musical instruments.” Proc. NIME, Jan 2010. 

[7] Kilbourn, K, and J Isaksson. “Meaning through 

doing: The role of affordances over time.” Paper for 

the Sixth Nordcode Seminar & Workshop, Design 

Semiotics in Use, 2007: 6-8. 

[8] Magnusson, T. “An Epistemic Dimension Space for 

Musical Devices.” Proceedings of the 2010 

Conference on New Interfaces for Musical 

Expression, 2010. 

[9] Marquez-Borbon, A, M Gurevich, A.C Fyans, and P 

Stapleton. “Designing Digital Musical Interactions 

in Experimental Contexts.” Proceedings of the 2011 

Conference on New Interfaces for Musical 

Expression (NIME 2011), 2011. 

[10] Marshall, M. “The augmentalist: enabling musicians 

to develop augmented musical instruments.” … of 

the fifth international conference on …, Jan 2011. 

[11] Meyer, R. “Conceptual and motor learning in music 

performance.” Psychological Science, Jan 2000. 

[12] Nymoen, K, K Glette, S Skogstad, J Torresen, and 

A Jensenius. “Searching for Cross-Individual 

Relationships between Sound and Movement 

Features using an SVM Classifier.” Proceedings of 

the 2010 Conference on New Interfaces for Musical 

Expression (NIME), 2010. 

[13] O’Modhrain, S. “A framework for the evaluation of 

digital musical instruments.” Computer Music 

Journal (MIT Press) 35, no. 1 (2011): 28-42. 

[14] Oore, S. “Learning advanced skills on new 

instruments (or practising scales and arpeggios on 

your NIME).” Proceedings of NIME, 2005: 60-65. 

[15] Tanaka, A. “Mapping out instruments, affordances, 

and mobiles.” Proceedings of the 2010 Conference 

on New Interfaces for Musical Expression (NIME 

2010), 2010: 88-93. 

[16] Vertegaal, R, T Ungvary, and M Kieslinger. 

“Towards a musician's cockpit: Transducers, 

feedback and musical function.” Proceedings of the 

International Computer Music Conference 

(Citeseer), 1996: 308-311. 

[17] Wessel, D. & Wright, M. “Problems and Prospects 

for intimate musical Control of Computers”, 

Computer Music Journal, Vol. 26 [3], pp. 11-22. 

 

  
 

ADAPTING GENERAL PURPOSE INTERFACES TO 
SYNTHESIS ENGINES USING UNSUPERVISED 

DIMENSIONALITY REDUCTION TECHNIQUES AND 
INVERSE MAPPING FROM FEATURES TO PARAMETERS 

Stefano Fasciani1,2 Lonce Wyse2,3 
1Graduate School for Integrative Sciences & Engineering 

2Arts and Creativity Laboratory, Interactive and Digital Media Institute  
3Department of Communications and New Media  

National University of Singapore 
{stefano17, lonce.wyse}@nus.edu.sg 

 
ABSTRACT 

In this paper we develop adaptive techniques for 
mapping generic user interfaces to synthesis engines. 
Upon selecting a subset of synthesis parameters, the 
system automatically finds the parameters-to-sound 
deterministic relationship in a multidimensional space. 
We analyze this sonic space using two different 
unsupervised dimensionality reduction techniques and 
we build the mapping using statistical information on a 
lower, but maximally representative, number of 
dimensions. The result is an adaptation of any general-
purpose interface to a specific synthesis engine, 
providing control directly over the perceptual features 
with greatest variance. This approach guarantees a linear 
relationship between control signals and perceptual 
features, and at the same time, reduces the control space 
dimensionality maintaining the maximum explorability 
of the sonic space. 

1. INTRODUCTION 

Synthesis engines often expose a large set of parameters 
to the users. Runtime variation of the parameters 
produces modification in the sound generated as well as 
in its perception. The physical separation of control 
from synthesis has promoted the proliferation of a 
variety of generic control interfaces, enabling reusability 
of the same controller with different synthesizers and 
vice versa. Since controllers and synthesizers are not 
“co-designed” [1], some kind of manual intervention is 
generally required to establish the “mapping” between 
them. 

In modern music genres the flexibility of the 
synthesis engine is widely exploited in such a way that 
notes and chords are looped or generated 
algorithmically rather than played with individual input 
gestures. The parameters that the musician modulates, 
usually represented by a real-valued numbers, result in 
timbral variation. This trend can be seen in a recurrent 
interface design pattern where sensors capable of 
capturing real-valued and time-continuous gesture are 
augmenting or replacing discrete ones. In addition, the 
evolution of the MIDI communication protocol and the 
introduction of OSC (Open Sound Control) are 
providing a more suitable communications 
infrastructure for this kind of control. 

As synthesis networks become more complex, 
predicting or understanding the parameter-to-sound 
relationship becomes more challenging. This is 
especially true when multiple synthesis parameters are 
interfering with each other or have built-in 
dependencies, correlations and nonlinearities. Users 
build their understanding of the causal relation between 
synthesis parameters and their sonic effect through 
experimentation, practice, and heuristics strategies. 

Within the majority of control devices and synthesis 
engines the routing of control signals to parameters is 
fairly basic: the range and occasionally the standard 
mapping functions (linear, exponential, logarithmic) are 
the only available options. Therefore, even assuming 
that it is possible to garner a heuristic understanding of 
the parameters-to-sound relationship, the desired 
mapping implementation might be impossible without 
the introduction of an intermediate processing layer. 

In this work we propose a technique to adapt a 
general-purpose interface to a synthesis engine through: 

• automatic analysis of the synthesis engine 
parameter-to-sound relationship based on 
perceptually related audio features; 

• generation of an adaptive mapping based on the 
application of unsupervised dimensionality 
reduction techniques on the multidimensional 
perceptual sonic space. 

Similar one-to-one, one-to-many or many-to-many 
mappings [2] have been developed through the 
introduction of an intermediate layer in the perceptual 
space [3]. Our work is focused on reducing the burden 
on the user who needs only to provide the system with 
information about the variable synthesis parameters. 
The dimensionality of the control space (number of 
independent signal from the control interface) can be set 
or modified a posteriori. Other than enabling direct 
control over perceptual aspects of the synthetized sound, 
which are user defined, this technique introduces two 
additional benefits: 

• a linear relationship is created between the 
control signal and the variation in the generated 
sound, avoiding situations where the 
controllers’ range leads to drastic sound 
variation or to null sound variation; 

• an optimal mapping is created from a control 
signal space C, with dimensionality c, to 



_468 _469

  
 

synthesis engine control parameters space P, 
with dimensionality p, with c smaller than p. 

The optimal mapping is defined as the one allowing 
the widest a sonic exploration when projecting the 
control space C into the perceptual features in the sonic 
spaces D, directly related to the synthesizer parameter 
space P. The number of concurrent signals controllable 
through human gesture is constrained by human 
cognitive and physical limitations. The consequence is 
that the of dimensionality of C is generally much 
smaller than P. Figure 1 shows a generic control 
interface driving a synthesis engine through the 
perceptual sonic space. In our approach this space is 
retrieved automatically and analysed with unsupervised 
dimensionality reduction techniques in order to compute 
the adapted mapping between control interface and 
synthesized sound. 

 

    -- 

Figure 1: Synthesis engine control through the 
perceptually related sonic space. 

1.1. Related Work 

Synthesis algorithms usually involve large number of 
parameters. Wessel [4] showed that it is possible to 
describe timbre spaces with fewer degrees of freedom 
than those exposed by most synthesis algorithms. This 
principle is exploited in several works where the sound 
synthesis or, in general, the sound generation is driven 
by musically or perceptually meaningful audio 
descriptors. In [5] the timbre of a synthetic sound is 
driven by an audio stream produced by a live musician. 
A low dimensional vector computed in real-time from 
the input audio stream and representing the user 
intention, is transformed into a vector representing the 
synthetic timbre. The timbre vector is then converted 
into synthesis parameter based on a prior analysis and 
multidimensional scaling of the synthesizer output 
sound behaviour. 

CataRT [6] is a concatenative sound synthesis system 
where grains are played from a large corpus of 
segmented and descriptor analyzed sounds and it can be 
seen as extension to granular synthesis. Depending on 
the corpus, CataRT is potentially able to generate a wide 
range of timbres. To facilitate the user navigation across 
the different sounds, the control is implemented in a low 
dimensional sound descriptors space. 

Granular synthesis, for its high dimensional control 
space and the variety of generated sound, is also used to 

demonstrate the benefit of the Modulation Matrix [7]. 
The authors’ approach, although substantially different 
from the one proposed here, provides a similar usability 
solution: an expressive control over the instrument in a 
lower dimensional space. The modulation matrix 
defines flexible interrelations between modulation 
sources and synthesis parameters, and allows 
modulation feedback. The entire matrix is dynamically 
altered through interpolation when the performer 
navigates gesture space. 

2. SYNTHESIS ENGINE PARAMETERS-TO-
SOUND ANALYSIS 

Within this context we define a synthesis engine as any 
chain of algorithmic processes that produce audio. We 
consider this chain of processes as a black box that 
converts vectors p of synthesis parameters into sound. 
Moreover we assume a deterministic behaviour, 
excluding the presence of any stochastic component 
within the chain. Hence it is possible to state that given 
a vector p, there is one and only one associated sound 
generated by the synthesis engine. The opposite of this 
statement may not be always true since, depending on 
the synthesis engine, different control p may lead to 
identical or very similar sounds. This will be taken into 
consideration in the adaptive mapping strategy in 
Section 3 to avoid potential noisy or discontinuous 
output. 

The set of unique combinations of synthesis 
parameters pse is defined upon selecting the variable 
parameters, their respective maximum value, minimum 
value and sampling resolution. Here we assume that 
each parameter is in the range [0,1] (if not a simple 
scaling operation is applied). Choosing j parameters pk 
the cardinality of pse is given by the equations below. 

€ 

pse = pk
k=1

j

∏                                   (1) 

pi =
max(pi )−min(pi )
resolution(pi )

                         (2) 

pse ⊂ p0,p1,...,pi,...,p pse
"
#

$
%= P                     (3) 

 
Equation (1) shows the cardinality of pse computed 

through the product of the cardinality of each pk, which 
in turn depends on the individual maximum, minimum, 
and sampling resolution (2). The set pse can be 
represented with a matrix P, where each column is a 
vector pi (unique combination of synthesis parameters). 
The cardinality of pse and the size of P grow 
exponentially with the number of parameters j, and 
linearly with the sampling resolution values. The 
selection of these values determines a trade-off between 
the level of detail in the synthesis engine analysis and 
the size of P. The size of this matrix affects not only 
memory but computational load as well, as discussed in 
Section 3. 

The sound is generated for each pi and analyzed to 
produce a corresponding vector di, using a fixed note on 

  
 
the chromatic scale. For each unique combination of 
synthesis parameters we compute not one but a 
sequence of vectors containing perceptually related 
features. For timbre that is static over time, the di 
corresponding to the fixed pi, is set to the mean of the 
sequence of computed feature vectors. This help to 
minimize the noise caused by the random position of the 
analysis window in relation to the generated sound. For 
dynamic timbres, such as those due, for example, to the 
presence of low frequency oscillations (LFOs) in the 
synthesis algorithm, the sequence of feature vectors is 
used also to capture extra information about the 
dynamic aspect of the sound. The vector di 
corresponding to the fixed pi is set to the mean of the 
sequence of vectors, adding and an extra scalar, which 
represents the timbre periodicity. Autocorrelation is 
used to compute the periodicity of each computed 
feature. If different periods are detected, their mean is 
used instead. The size and number of the analysis 
windows define the minimum detectable periodicity, 
while window overlap affects the maximum. For a 
better characterization of the dynamic aspect, the vector 
di can be further extended adding a periodicity value 
and oscillation range for each perceptually related 
feature, tripling its size. 

Vectors di are stored in a matrix D and together with 
P fully characterize the parameters-to-sound 
relationship of the synthesis engine in the perceptual 
sonic space. Through column indexing it is possible to 
associate the |pse| unique combinations of synthesis 
parameters with the relative perceptual features vector 
and vice versa. The adaptive mapping is based on the 
information embedded in these two matrices. 

3. ADAPTIVE MAPPING 

Here we assume that the general-purpose control 
interface generates a set of independent signals within 
the range [0,1] and with uniform distribution. Therefore 
the space C, with dimensionality c, can be approximated 
with a hypercube. To obtain an adaptive mapping we 
further analyze the matrix D to generate another 
hypercube in a projected perceptually related parameter 
space, then the mapping is simply obtained by linking 
the two hypercubes. The number of control signals does 
not affect the D post-processing stages to define the 
mapping; its posterior definition simply restricts the 
navigation in the sonic space to a certain number of 
dimensions. However this method guarantees that even 
with a limited control space dimensionality c, the 
perceptual feature space is explored along the directions 
corresponding to the maximum variability. This may not 
always correspond to the maximum variability in the 
pure human perception. We describe and apply two 
different unsupervised dimensionality reduction 
techniques: PCA (Principal Component Analysis) and 
ISOMAP, both followed by a statistical analysis from 
which the mapping is derived. 

3.1. Principal Component Approach 

PCA is an unsupervised technique that uses an 
orthogonal transformation to convert a set of 
multivariate observations of potentially correlated 
variables into a set of uncorrelated variables called 
Principal Components (PCs). Since the matrix D can 
have high dimensionality, we apply a stage of PCA to 
project the data into a lower dimensional space. The 
multivariate data in D is subjected to a prior whitening 
which scales each dimension to zero mean and unitary 
variance. The orthogonal and uncorrelated set of PCs is 
ranked by variance, representing the quantity of 
information carried by each. Mapping the hypercube C 
on to the PCs of DPC, guarantees control within the 
subspace where the perceptual features change the most. 

Compared to other works, the number of perceptually 
related features can be relatively high here. It is not 
necessary to have prior knowledge about variations of 
features with synthesis engine parameter alteration. 
Perceptually meaningful features that are constant are 
automatically discarded. However, the user can 
compose and weight individual features in order to 
customize the adaptive result if desired. In this way it is 
possible to obtain a control focused on specific 
perceptual features that are not necessarily the 
dominants in terms of absolute variability. 

To provide a response that is as linear as possible, it 
is necessary to analyze the data across the PCs. For each 
dimension the density is estimated through a histogram 
with a number of bins proportional to the product of the 
inverse of the sampling resolutions. Since PC ranges 
with low density should be explored with a finer step 
compared to those with high density we use the 
complement of the histogram, represented in (5) 
histCOMP. For each PC the mapping function is based on 
its normalized integral, implemented through the 
cumulative sum in the discrete domain. Two examples 
of ci (vertical axis) mapping over the PCi (horizontal 
axis) are showed in Figure 2, where the black 
continuous monotonic line represents the mapping 
function. Equation (4) shows how the control signal ci is 
transformed into a PCi value through the inverse of the 
mapping function mi (5).  

PCi =m
−1(ci )                              (4) 

mi (pci ) = histCOMP (pci )
PCi

∫ ⋅dpci                      (5) 

 
 

 
Figure 2: An example of histograms (scaled 10x) and 
mapping functions mi (solid line) for the first two PCi. 



_468 _469

  
 

synthesis engine control parameters space P, 
with dimensionality p, with c smaller than p. 

The optimal mapping is defined as the one allowing 
the widest a sonic exploration when projecting the 
control space C into the perceptual features in the sonic 
spaces D, directly related to the synthesizer parameter 
space P. The number of concurrent signals controllable 
through human gesture is constrained by human 
cognitive and physical limitations. The consequence is 
that the of dimensionality of C is generally much 
smaller than P. Figure 1 shows a generic control 
interface driving a synthesis engine through the 
perceptual sonic space. In our approach this space is 
retrieved automatically and analysed with unsupervised 
dimensionality reduction techniques in order to compute 
the adapted mapping between control interface and 
synthesized sound. 

 

    -- 

Figure 1: Synthesis engine control through the 
perceptually related sonic space. 

1.1. Related Work 

Synthesis algorithms usually involve large number of 
parameters. Wessel [4] showed that it is possible to 
describe timbre spaces with fewer degrees of freedom 
than those exposed by most synthesis algorithms. This 
principle is exploited in several works where the sound 
synthesis or, in general, the sound generation is driven 
by musically or perceptually meaningful audio 
descriptors. In [5] the timbre of a synthetic sound is 
driven by an audio stream produced by a live musician. 
A low dimensional vector computed in real-time from 
the input audio stream and representing the user 
intention, is transformed into a vector representing the 
synthetic timbre. The timbre vector is then converted 
into synthesis parameter based on a prior analysis and 
multidimensional scaling of the synthesizer output 
sound behaviour. 

CataRT [6] is a concatenative sound synthesis system 
where grains are played from a large corpus of 
segmented and descriptor analyzed sounds and it can be 
seen as extension to granular synthesis. Depending on 
the corpus, CataRT is potentially able to generate a wide 
range of timbres. To facilitate the user navigation across 
the different sounds, the control is implemented in a low 
dimensional sound descriptors space. 

Granular synthesis, for its high dimensional control 
space and the variety of generated sound, is also used to 

demonstrate the benefit of the Modulation Matrix [7]. 
The authors’ approach, although substantially different 
from the one proposed here, provides a similar usability 
solution: an expressive control over the instrument in a 
lower dimensional space. The modulation matrix 
defines flexible interrelations between modulation 
sources and synthesis parameters, and allows 
modulation feedback. The entire matrix is dynamically 
altered through interpolation when the performer 
navigates gesture space. 

2. SYNTHESIS ENGINE PARAMETERS-TO-
SOUND ANALYSIS 

Within this context we define a synthesis engine as any 
chain of algorithmic processes that produce audio. We 
consider this chain of processes as a black box that 
converts vectors p of synthesis parameters into sound. 
Moreover we assume a deterministic behaviour, 
excluding the presence of any stochastic component 
within the chain. Hence it is possible to state that given 
a vector p, there is one and only one associated sound 
generated by the synthesis engine. The opposite of this 
statement may not be always true since, depending on 
the synthesis engine, different control p may lead to 
identical or very similar sounds. This will be taken into 
consideration in the adaptive mapping strategy in 
Section 3 to avoid potential noisy or discontinuous 
output. 

The set of unique combinations of synthesis 
parameters pse is defined upon selecting the variable 
parameters, their respective maximum value, minimum 
value and sampling resolution. Here we assume that 
each parameter is in the range [0,1] (if not a simple 
scaling operation is applied). Choosing j parameters pk 
the cardinality of pse is given by the equations below. 

€ 

pse = pk
k=1

j

∏                                   (1) 

pi =
max(pi )−min(pi )
resolution(pi )

                         (2) 

pse ⊂ p0,p1,...,pi,...,p pse
"
#

$
%= P                     (3) 

 
Equation (1) shows the cardinality of pse computed 

through the product of the cardinality of each pk, which 
in turn depends on the individual maximum, minimum, 
and sampling resolution (2). The set pse can be 
represented with a matrix P, where each column is a 
vector pi (unique combination of synthesis parameters). 
The cardinality of pse and the size of P grow 
exponentially with the number of parameters j, and 
linearly with the sampling resolution values. The 
selection of these values determines a trade-off between 
the level of detail in the synthesis engine analysis and 
the size of P. The size of this matrix affects not only 
memory but computational load as well, as discussed in 
Section 3. 

The sound is generated for each pi and analyzed to 
produce a corresponding vector di, using a fixed note on 

  
 
the chromatic scale. For each unique combination of 
synthesis parameters we compute not one but a 
sequence of vectors containing perceptually related 
features. For timbre that is static over time, the di 
corresponding to the fixed pi, is set to the mean of the 
sequence of computed feature vectors. This help to 
minimize the noise caused by the random position of the 
analysis window in relation to the generated sound. For 
dynamic timbres, such as those due, for example, to the 
presence of low frequency oscillations (LFOs) in the 
synthesis algorithm, the sequence of feature vectors is 
used also to capture extra information about the 
dynamic aspect of the sound. The vector di 
corresponding to the fixed pi is set to the mean of the 
sequence of vectors, adding and an extra scalar, which 
represents the timbre periodicity. Autocorrelation is 
used to compute the periodicity of each computed 
feature. If different periods are detected, their mean is 
used instead. The size and number of the analysis 
windows define the minimum detectable periodicity, 
while window overlap affects the maximum. For a 
better characterization of the dynamic aspect, the vector 
di can be further extended adding a periodicity value 
and oscillation range for each perceptually related 
feature, tripling its size. 

Vectors di are stored in a matrix D and together with 
P fully characterize the parameters-to-sound 
relationship of the synthesis engine in the perceptual 
sonic space. Through column indexing it is possible to 
associate the |pse| unique combinations of synthesis 
parameters with the relative perceptual features vector 
and vice versa. The adaptive mapping is based on the 
information embedded in these two matrices. 

3. ADAPTIVE MAPPING 

Here we assume that the general-purpose control 
interface generates a set of independent signals within 
the range [0,1] and with uniform distribution. Therefore 
the space C, with dimensionality c, can be approximated 
with a hypercube. To obtain an adaptive mapping we 
further analyze the matrix D to generate another 
hypercube in a projected perceptually related parameter 
space, then the mapping is simply obtained by linking 
the two hypercubes. The number of control signals does 
not affect the D post-processing stages to define the 
mapping; its posterior definition simply restricts the 
navigation in the sonic space to a certain number of 
dimensions. However this method guarantees that even 
with a limited control space dimensionality c, the 
perceptual feature space is explored along the directions 
corresponding to the maximum variability. This may not 
always correspond to the maximum variability in the 
pure human perception. We describe and apply two 
different unsupervised dimensionality reduction 
techniques: PCA (Principal Component Analysis) and 
ISOMAP, both followed by a statistical analysis from 
which the mapping is derived. 

3.1. Principal Component Approach 

PCA is an unsupervised technique that uses an 
orthogonal transformation to convert a set of 
multivariate observations of potentially correlated 
variables into a set of uncorrelated variables called 
Principal Components (PCs). Since the matrix D can 
have high dimensionality, we apply a stage of PCA to 
project the data into a lower dimensional space. The 
multivariate data in D is subjected to a prior whitening 
which scales each dimension to zero mean and unitary 
variance. The orthogonal and uncorrelated set of PCs is 
ranked by variance, representing the quantity of 
information carried by each. Mapping the hypercube C 
on to the PCs of DPC, guarantees control within the 
subspace where the perceptual features change the most. 

Compared to other works, the number of perceptually 
related features can be relatively high here. It is not 
necessary to have prior knowledge about variations of 
features with synthesis engine parameter alteration. 
Perceptually meaningful features that are constant are 
automatically discarded. However, the user can 
compose and weight individual features in order to 
customize the adaptive result if desired. In this way it is 
possible to obtain a control focused on specific 
perceptual features that are not necessarily the 
dominants in terms of absolute variability. 

To provide a response that is as linear as possible, it 
is necessary to analyze the data across the PCs. For each 
dimension the density is estimated through a histogram 
with a number of bins proportional to the product of the 
inverse of the sampling resolutions. Since PC ranges 
with low density should be explored with a finer step 
compared to those with high density we use the 
complement of the histogram, represented in (5) 
histCOMP. For each PC the mapping function is based on 
its normalized integral, implemented through the 
cumulative sum in the discrete domain. Two examples 
of ci (vertical axis) mapping over the PCi (horizontal 
axis) are showed in Figure 2, where the black 
continuous monotonic line represents the mapping 
function. Equation (4) shows how the control signal ci is 
transformed into a PCi value through the inverse of the 
mapping function mi (5).  

PCi =m
−1(ci )                              (4) 

mi (pci ) = histCOMP (pci )
PCi

∫ ⋅dpci                      (5) 

 
 

 
Figure 2: An example of histograms (scaled 10x) and 
mapping functions mi (solid line) for the first two PCi. 



_470 _471

  
 

The interface signals ci are used to generate a value 
of the first c PCi of DPC with linear interpolation, 
obtaining a di in the principal components space. The 
number of components considered in the system is 
limited to the number carrying 90% of the total energy. 
If c is smaller than the number of PCi, the control signal 
mapped on the lower rank component is optionally 
mapped at the same time also on all the remaining ones. 

3.2. ISOMAP Approach 

ISOMAP is a low-dimensional embedding method [8], 
where geodesic distances on a weighted graph are 
incorporated with classical scaling. It is exploited to 
compute a quasi-isometric, low-dimensional embedding 
of a set of high dimensional data points. At the same 
time this algorithm provides a simple method for 
estimating the intrinsic geometry of a data manifold. The 
main difference with other multi dimensional scaling 
methods is in the choice of the geodesic distance metric, 
rather than the Euclidean one. In ISOMAP, the geodesic 
distance is the sum of edge weights along the shortest 
path between two nodes, computed using Dijkstra's 
algorithm. The top n eigenvectors of the geodesic 
distance matrix represent the coordinates in the new n-
dimensional Euclidean space. ISOMAP implements a 
transformation of the space, while PCA projects the data 
into a new coordinates system in the same space. 
Dimensionality reduction with ISOMAP is applied to D 
with the same method described in the previous 
subsection for PCA. The mapping of the c control 
signals on the new coordinates system, named ISOi, is 
based on an estimation of densities and distributions as 
before. ISOMAP has a higher computational cost 
compared to PCA, but it detects and exploits the 
embedded manifold, achieving a more effective 
dimensionality reduction. ISOMAP is preferred when 
the control space C has a very low dimensionality. This 
difference is evident when comparing the energy in each 
dimension or the residual variance. Figure 3 shows an 
example of an energy distribution, measured in terms of 
variance, across the PCi and ISOi for the same data set. 

The number of vectors d in DISO can be lower than 
DPC because the ISOMAP algorithm includes an outlier 
removal stage. To guarantee coherence, the number of 
elements in DPC and P must be the same. Hence the 
vectors p relative to the outliers are removed from P. 

3.3. Synthesis engine parameters retrieval 

For both approaches, after the generation of the vector 
dPC (or dISO) we search the nearest neighbour vector in 
the matrix DPC (or DISO). Through column indexing we 
retrieve from P the vector p used to drive the synthesis 
engine instantaneously. This simple approach leads to 
potential discontinuity in the synthesis parameters 
generation, because different combinations of synthesis 
parameters that might be far apart in the control space 
may lead to identical or near points in the perceptually 
related feature space. To guarantee continuity we 
propose two solutions. In the first one we retrieve K NN 
(nearest neighbours) in DPC rather than one and drive the 

synthesis engine with the mean of the K corresponding 
vectors p. In the second one, before searching for the 
nearest neighbour, we append p to the dPC (or dISO) and 
we append the matrix P to DPC (or DISO). The first 
solution shows a limitation when the K p are very far 
apart, while the second can be debatable because 
perceptual features and synthesis parameters are merged 
in the same multidimensional space, hence the search is 
performed in a heterogeneous space. However, these 
methods improve a shortcoming in [5] where 
occasionally the system gets trapped in local minima. 

As mentioned before, the sampling resolutions affect 
the size of P and D. The computational load required for 
the K NN search is thus proportional to the size of the 
matrix and it affects the system minimum response time. 

 

 

Figure 3: PCA (left) and ISOMAP (right) energy 
distribution across the reduced dimensions accounting 
for 90% of the total energy for the same dataset (note 

the different y axis scale). 

4. PROTOTYPE AND APPLICATION 

A prototype1 has been developed and is implemented in 
Max/MSP and MATLAB. The prototype uses the FTM 
[9] and MnM [10] toolbox for vector and matrix 
processing in Max/MSP. The perceptually related 
feature set is based on Tristan Jehan’s “analyzer~” 
(includes “fiddle~” by Miller Puckette) max external. 
The feature vector hence includes: loudness, pitch, 
brightness, noisiness, and the energies in the 25 Bark 
bands. Each feature can be enabled/disabled by the user 
and a weight vector can be defined as well to provide 
better customization. The adaptive approach is 
independent of the dimensionality and content of the 
feature vector, therefore a different selection is possible. 

The prototype is integrated with Ableton Live using 
the Max For Live framework for the interfacing 
capabilities with state of-the-art synthesis engines. Two 
Max For Live patches cooperate to analyze the synthesis 
engine. The front-end generates the pi set and drive the 
synthesizer with up to 8 parameters, and the back-end 
analyses the audio signal, stores pi and the relative 
multiple di in the matrices P and D. The post processing 
of D described in Section 2, and the adaptive mapping 
described in Section 3, are computed within MATLAB 
using the author’s ISOMAP implementation2. Another 
                                                             
1 Images of the Max For Live prototype patches are available at 
http://anclab.org/downloads/fasciani_icmc12.zip 

2 http://isomap.stanford.edu/ 

  
 
two Max For Live patches implement the runtime 
adaptive control for PCA and ISOMAP respectively, 
exposing up to 4 PCi/ISOi mapped control parameters. 

Through the prototype’s Max For Live patches it is 
possible to set and modify several system settings 
allowing exploration of different configurations. In the 
analysis patches it is possible to set the sampling 
resolutions, the parameters range, the note and the 
timing (in terms of delays) of the automatic analysis. 
Moreover, the number of analysis windows and the hop 
size are flexible, while the window size is fixed at 4096 
samples. The control patches allow further reduction of 
the dimensionality of the PCA projection and ISOMAP 
transformation, modification of the K NN number, and 
the dimensionality of the control space C. The prototype 
allows also for inverting the polarity of every PCi or 
ISOi in order to flip the synthesis engine response. 

4.1. Single Parameter Application 

In this first application we chose a simple scenario to 
demonstrate the adaptation capability. The synthesis 
engine is the Ableton Live Operator synth, 
implementing a simple FM synthesis using just two 
oscillators. The only variable parameter is the cut-off 
frequency of the low pass filter. We run the analysis 
over the full range of the parameter and a reduced set of 
features, using the energy of Bark bands only. Four 
analysis windows per state pi are computed with a hope 
size of 2048 samples, using C2 as fixed note. For the 
mapping we use only the principal dimension from the 
PCA and ISOMAP methods in order to have a 1D 
comparison metric. Both provide an identic result in 
terms of adapted control: most of the energy is 
concentrated on the first component since there is high 
correlation in D. Figure 4 shows three-dimensional 
scatter plot of the first three PCi or ISOi (note the 
different axis ranges), where is possible to appreciate 
the capability of ISOMAP to detect the manifold and 
organize the data almost on a line. Figure 5 illustrates 
how the adapted control provides a linear response over 
the feature with the greatest variance, while the control 
signal applied directly to the cut-off frequency present a 
non-linear response and a range with almost no effect 
over the generated sound. 

 

 
Figure 4: 3D scatters of the lower dimensional 

perceptually related features after PCA (left) and 
ISOMAP (right). 

 

 
Figure 5: The synthesis engine parameter (left) and the 

adapted control (right) versus the principal feature. 

4.2. Two Parameters Application 

In a second example, we run the analysis computing the 
complete features set on a preset of the Ableton Live 
Analog synth, modifying the two “oscillator detune” 
parameters with a coarse sampling resolution. Ten 
analysis windows per state pi are computed with a hope 
size of 1024 samples, using C3 as fixed note. Figure 6 
shows how the two principal PCA and ISOMAP 
projected perceptual features are very noisy over the 
control parameter space, but in Figure 7 it is evident that 
these are linear and stable due to the adaptive control. 
The wider range obtained with the ISOMAP is due to its 
capacity to embed energy in a lower number of 
dimensions. 

 

 
Figure 6: Two synthesis engine parameters versus: 

PC1 (top left), PC2 (top right), ISO1 (bottom left), ISO2 
(bottom right). 

 

 
Figure 7: First adapted control versus the primary 
feature (left) and second adapted control versus the 

secondary feature (right) for PCA and ISOMAP 
adaptations. 



_470 _471

  
 

The interface signals ci are used to generate a value 
of the first c PCi of DPC with linear interpolation, 
obtaining a di in the principal components space. The 
number of components considered in the system is 
limited to the number carrying 90% of the total energy. 
If c is smaller than the number of PCi, the control signal 
mapped on the lower rank component is optionally 
mapped at the same time also on all the remaining ones. 

3.2. ISOMAP Approach 

ISOMAP is a low-dimensional embedding method [8], 
where geodesic distances on a weighted graph are 
incorporated with classical scaling. It is exploited to 
compute a quasi-isometric, low-dimensional embedding 
of a set of high dimensional data points. At the same 
time this algorithm provides a simple method for 
estimating the intrinsic geometry of a data manifold. The 
main difference with other multi dimensional scaling 
methods is in the choice of the geodesic distance metric, 
rather than the Euclidean one. In ISOMAP, the geodesic 
distance is the sum of edge weights along the shortest 
path between two nodes, computed using Dijkstra's 
algorithm. The top n eigenvectors of the geodesic 
distance matrix represent the coordinates in the new n-
dimensional Euclidean space. ISOMAP implements a 
transformation of the space, while PCA projects the data 
into a new coordinates system in the same space. 
Dimensionality reduction with ISOMAP is applied to D 
with the same method described in the previous 
subsection for PCA. The mapping of the c control 
signals on the new coordinates system, named ISOi, is 
based on an estimation of densities and distributions as 
before. ISOMAP has a higher computational cost 
compared to PCA, but it detects and exploits the 
embedded manifold, achieving a more effective 
dimensionality reduction. ISOMAP is preferred when 
the control space C has a very low dimensionality. This 
difference is evident when comparing the energy in each 
dimension or the residual variance. Figure 3 shows an 
example of an energy distribution, measured in terms of 
variance, across the PCi and ISOi for the same data set. 

The number of vectors d in DISO can be lower than 
DPC because the ISOMAP algorithm includes an outlier 
removal stage. To guarantee coherence, the number of 
elements in DPC and P must be the same. Hence the 
vectors p relative to the outliers are removed from P. 

3.3. Synthesis engine parameters retrieval 

For both approaches, after the generation of the vector 
dPC (or dISO) we search the nearest neighbour vector in 
the matrix DPC (or DISO). Through column indexing we 
retrieve from P the vector p used to drive the synthesis 
engine instantaneously. This simple approach leads to 
potential discontinuity in the synthesis parameters 
generation, because different combinations of synthesis 
parameters that might be far apart in the control space 
may lead to identical or near points in the perceptually 
related feature space. To guarantee continuity we 
propose two solutions. In the first one we retrieve K NN 
(nearest neighbours) in DPC rather than one and drive the 

synthesis engine with the mean of the K corresponding 
vectors p. In the second one, before searching for the 
nearest neighbour, we append p to the dPC (or dISO) and 
we append the matrix P to DPC (or DISO). The first 
solution shows a limitation when the K p are very far 
apart, while the second can be debatable because 
perceptual features and synthesis parameters are merged 
in the same multidimensional space, hence the search is 
performed in a heterogeneous space. However, these 
methods improve a shortcoming in [5] where 
occasionally the system gets trapped in local minima. 

As mentioned before, the sampling resolutions affect 
the size of P and D. The computational load required for 
the K NN search is thus proportional to the size of the 
matrix and it affects the system minimum response time. 

 

 

Figure 3: PCA (left) and ISOMAP (right) energy 
distribution across the reduced dimensions accounting 
for 90% of the total energy for the same dataset (note 

the different y axis scale). 

4. PROTOTYPE AND APPLICATION 

A prototype1 has been developed and is implemented in 
Max/MSP and MATLAB. The prototype uses the FTM 
[9] and MnM [10] toolbox for vector and matrix 
processing in Max/MSP. The perceptually related 
feature set is based on Tristan Jehan’s “analyzer~” 
(includes “fiddle~” by Miller Puckette) max external. 
The feature vector hence includes: loudness, pitch, 
brightness, noisiness, and the energies in the 25 Bark 
bands. Each feature can be enabled/disabled by the user 
and a weight vector can be defined as well to provide 
better customization. The adaptive approach is 
independent of the dimensionality and content of the 
feature vector, therefore a different selection is possible. 

The prototype is integrated with Ableton Live using 
the Max For Live framework for the interfacing 
capabilities with state of-the-art synthesis engines. Two 
Max For Live patches cooperate to analyze the synthesis 
engine. The front-end generates the pi set and drive the 
synthesizer with up to 8 parameters, and the back-end 
analyses the audio signal, stores pi and the relative 
multiple di in the matrices P and D. The post processing 
of D described in Section 2, and the adaptive mapping 
described in Section 3, are computed within MATLAB 
using the author’s ISOMAP implementation2. Another 
                                                             
1 Images of the Max For Live prototype patches are available at 
http://anclab.org/downloads/fasciani_icmc12.zip 

2 http://isomap.stanford.edu/ 

  
 
two Max For Live patches implement the runtime 
adaptive control for PCA and ISOMAP respectively, 
exposing up to 4 PCi/ISOi mapped control parameters. 

Through the prototype’s Max For Live patches it is 
possible to set and modify several system settings 
allowing exploration of different configurations. In the 
analysis patches it is possible to set the sampling 
resolutions, the parameters range, the note and the 
timing (in terms of delays) of the automatic analysis. 
Moreover, the number of analysis windows and the hop 
size are flexible, while the window size is fixed at 4096 
samples. The control patches allow further reduction of 
the dimensionality of the PCA projection and ISOMAP 
transformation, modification of the K NN number, and 
the dimensionality of the control space C. The prototype 
allows also for inverting the polarity of every PCi or 
ISOi in order to flip the synthesis engine response. 

4.1. Single Parameter Application 

In this first application we chose a simple scenario to 
demonstrate the adaptation capability. The synthesis 
engine is the Ableton Live Operator synth, 
implementing a simple FM synthesis using just two 
oscillators. The only variable parameter is the cut-off 
frequency of the low pass filter. We run the analysis 
over the full range of the parameter and a reduced set of 
features, using the energy of Bark bands only. Four 
analysis windows per state pi are computed with a hope 
size of 2048 samples, using C2 as fixed note. For the 
mapping we use only the principal dimension from the 
PCA and ISOMAP methods in order to have a 1D 
comparison metric. Both provide an identic result in 
terms of adapted control: most of the energy is 
concentrated on the first component since there is high 
correlation in D. Figure 4 shows three-dimensional 
scatter plot of the first three PCi or ISOi (note the 
different axis ranges), where is possible to appreciate 
the capability of ISOMAP to detect the manifold and 
organize the data almost on a line. Figure 5 illustrates 
how the adapted control provides a linear response over 
the feature with the greatest variance, while the control 
signal applied directly to the cut-off frequency present a 
non-linear response and a range with almost no effect 
over the generated sound. 

 

 
Figure 4: 3D scatters of the lower dimensional 

perceptually related features after PCA (left) and 
ISOMAP (right). 

 

 
Figure 5: The synthesis engine parameter (left) and the 

adapted control (right) versus the principal feature. 

4.2. Two Parameters Application 

In a second example, we run the analysis computing the 
complete features set on a preset of the Ableton Live 
Analog synth, modifying the two “oscillator detune” 
parameters with a coarse sampling resolution. Ten 
analysis windows per state pi are computed with a hope 
size of 1024 samples, using C3 as fixed note. Figure 6 
shows how the two principal PCA and ISOMAP 
projected perceptual features are very noisy over the 
control parameter space, but in Figure 7 it is evident that 
these are linear and stable due to the adaptive control. 
The wider range obtained with the ISOMAP is due to its 
capacity to embed energy in a lower number of 
dimensions. 

 

 
Figure 6: Two synthesis engine parameters versus: 

PC1 (top left), PC2 (top right), ISO1 (bottom left), ISO2 
(bottom right). 

 

 
Figure 7: First adapted control versus the primary 
feature (left) and second adapted control versus the 

secondary feature (right) for PCA and ISOMAP 
adaptations. 



_472 _473

  
 
4.3. Partikkel Hadron Application 

In the last example we use the Partikkel Hardon3 
granular synthesizer with one of the provided pre-set. 
Through granular synthesis it is possible to obtain large 
timbre variation due to the nature of the synthesis, but 
often the control parameter set is large and challenging 
to design an interface for. This device exposes just 6 
parameters for timbre manipulation thanks to the 
exploitation of the Modulation Matrix [7]. We analyze 
the generated audio with 25 Bark bands energies over 
the whole control space given by all possible 
combinations of the 6 parameters. Sixteen analysis 
windows per state pi are computed with a hope size of 
512 samples, using C2 as fixed note. In this more 
complex scenario the performance of ISOMAP is 
sensibly better than PCA. The data presented in Figure 8 
shows how ISOMAP, when compared with PCA, allows 
the reduction of at least one dimension in the control 
space C without losses in the overall descriptors space 
energy With the ISOMAP adaptation, we obtain a 
further reduction of the control space. This enables the 
use of a simple 2D controller, while still permitting the 
navigation of the majority of the granular synthesis 
sonic space spanned by the original 6 parameters. 

 

 
Figure 8: PCA (left) and ISOMAP (right) energy 

distribution across the reduced dimensions for the same 
Hadron granular synthesizer dataset. 

5. CONCLUSION AND FUTURE WORK 

We presented a generic method to adapt general-
purpose interfaces to synthesis engines through 
unsupervised dimensionality reduction techniques and 
statistical analysis of the perceptually related features 
computed over the synthetic sound. The application of 
the prototype demonstrates the benefits introduced by 
this adaptive technique, including the linearization of 
the relationship controller-to-sound, and the 
dimensionality reduction of the control space. However 
some aspects can be further explored for improvements. 

The exploitation of dynamic features in synthetic 
timbres must be explored more extensively. The 
computation of the dynamic aspect of the timbre has 
been tested, but embedding static and dynamic features 
in the same vector d may not be appropriate for all 
cases. Storing this information in two separate matrices 
and running dimensionality reduction separately on each 
may result in an adaptive mapping that is easier to use. 
                                                             
3 http:// http://www.partikkelaudio.com/ 

The current MATLAB implementation of the 
ISOMAP algorithm is computationally expensive in 
terms of time and memory, thus we had to limit the 
dimensionality of D and P to 4000, which is too small to 
handle large numbers of parameters sampled with a high 
resolution. This limitation of the resolution is reflected 
in the usability experience. An optimization of the 
algorithm implementation is thus desirable. 

In Section 3 we make some assumptions about the 
control interface output signals. These are generally true 
for most of the commercial general-purpose interfaces 
(e.g. sets of sliders, knobs, touch surfaces, touch screen 
devices). For other interfaces built with large numbers 
of sensors, or devices capturing human gesture through 
image or sound, the assumptions may not hold. Through 
a statistical study of the interface signals it should be 
possible to apply a pre-processing stage that produces 
independent components within the desired range.  

6. REFERENCES 

[1]  P. R. Cook, “Principles for designing computer 
music controllers,” in Proceedings of the 2001 
conference on New interfaces for musical 
expression, 2001, pp. 1–4. 

[2]  M. Wanderley, “Performer–Instrument Interaction: 
Applications to Gestural Control of Sound 
Synthesis,” Ph.D. Thesis, University Paris, 2001. 

[3]  D. Arfib, J. M. Couturier, L. Kessous, and V. 
Verfaille, “Strategies of mapping between gesture 
data and synthesis model parameters using 
perceptual spaces,” Org. Sound, vol. 7, no. 2, pp. 
127–144, Aug. 2002. 

[4]  D. Wessel, “Timbre Space as a Musical Control 
Structure,” Computer Music Journal, vol. 3, no. 2, 
pp. 45–52, 1979. 

[5]  M. Puckette, “Low-dimensional parameter 
mapping using spectral envelopes,” in Proceedings, 
International Computer Music Conference, Miami, 
2004. 

[6]  D. Schwarz, G. Beller, B. Verbrugghe, S. Britton, 
and others, “Real-time corpus-based concatenative 
synthesis with catart,” in Proc. of the Int. Conf. on 
Digital Audio Effects (DAFx-06),(Montreal, 
Quebec, Canada), 2006, pp. 279–282. 

[7]  U. Brandtsegg, S. Saue, and T. Johansen, “A 
modulation matrix for complex parameter sets,” in 
Proceedings of the New Interfaces for Musical 
Expression Conference, 2011. 

[8]  J. B. Tenenbaum, V. Silva, and J. C. Langford, “A 
global geometric framework for nonlinear 
dimensionality reduction,” Science, vol. 290, no. 
5500, p. 2319, 2000. 

[9]  D. Schwarz, N. Schnell, R. Borghesi, F. 
Bevilacqua, and R. Muller, “FTM — Complex Data 
Structure for Max,” 2005. 

[10]  F. Bevilacqua, R. Müller, and N. Schnell, “MnM: a 
Max/MSP mapping toolbox,” in Proceedings of the 
2005 conference on New interfaces for musical 
expression, 2005, pp. 85–88. 

A MICROPHONE ARRAY INTERFACE FOR REAL-TIME INTERACTIVE
MUSIC PERFORMANCE

Daniele Salvati

AVIRES lab
Dep. of Mathematics and Computer Science,

University of Udine, Italy
daniele.salvati@uniud.it

Sergio Canazza

Sound and Music Computing Group
Dep. of Information Engineering,

University of Padova, Italy
canazza@dei.unipd.it

Gian Luca Foresti

AVIRES lab
Dep. of Mathematics and Computer Science,

University of Udine, Italy
gianluca.foresti@uniud.it

ABSTRACT

A novel digital musical interface based on sound source
localization using a microphone array is presented. It al-
lows a performer to plan and conduct the expressivity of a
performance by controlling an audio processing module in
real-time through the spatial movement of a sound source
(i.e., voice, traditional musical instruments, and sound-
ing mobile devices). The prototype interface consists of
an adaptive parameterized Steered Response Power Phase
Transform (SRP-PHAT) with a Zero-Crossing Rate (ZCR)
threshold and a Kalman filter that provides a more accu-
rate estimate and tracking of the source position if there is
movement. A real-time software based on external Max
object was developed to test the system in a real-world
moderately reverberant and noisy environment, focusing
on the performance of pseudo-periodic sounds in a multi-
source scenario.

1. INTRODUCTION

Recently, microphone array signal processing is increas-
ingly being used in human computer interaction systems,
for example the new popular interface Microsoft Kinect
incorporates a microphone array to improve the voice recog-
nition using the acoustic source localization and the beam-
forming for noise suppression. In the past years, a large
number of musical interfaces has been implemented with
the goal of providing tools for gestural interaction with
digital sounds, using systems played by touching or hold-
ing the instrument, interfaces with haptic feedback, sys-
tems worn on the body, and interfaces that may be played
without any physical contact (electric field sensors [12],
optical sensors [7], ultrasound systems [10], and video
camera that allows the performers to use their full-body
for controlling in real-time the generation of an expres-
sive audio-visual feedback [1]).

This paper presents a novel digital musical interface
for real-time interactive music performance, which uses
a microphone array to estimate the sound source position
in the plane and to allow a performer to use the two x-
y coordinates of position to control an audio processing
module in real-time through the spatial movement of a
sound source. Musical interfaces are often used to al-
low the performer to enhance the expressive control on
the sounds generated by their acoustic instruments in a
live electronics context. E.g., in the works by Adriano
Guarnieri - Medea (2002) and Fili bianco-velati (2005)
- produced at the “Centro di Sonologia Computazionale”
of Padova, the movement of a musician is followed by a
motion capture system based on infrared cameras to con-
trol a live electronics patch [4], and using the robust, but
very expensive, PhaseSpace optical motion capture sys-
tem. It is composed by led systems, video cameras, and
calibration procedure. In general, those kind of systems
have considerable complexity and in some situations there
could be problems with the low and/or not always control-
lable lighting of the concert hall, even when using infrared
camera. It has been shown in [14] that there is some po-
tentiality in using the sound source localization to directly
control the position of a sound played back through a spa-
tialization system by moving the sound produced by its
own musical instrument. This work has been improved in
[13] introducing an adaptive parameterized Generalizated
Cross-Correlation (GCC) PHAT filter to localize musi-
cal sounds that are mainly harmonics. Both interfaces
[14] [13] are been tested in a controlled real environment
without verifying how the system works with interfering
sources from a sound reinforcement system and other in-
struments. Thus, in this paper a validation in multi-source
scenario is presented, introducing the adaptive parameter-
ized SRP-PHAT with a ZCR threshold (Section 3) that has
a better performance than the parameterized GCC-PHAT
proposed in [13] as shown in Section 4.




