
Adventures in scheduling, buffers and parameters :
Porting a dynamic audio engine to Web Audio

Chinmay Pendharkar
Sonoport Asia Pte. Ltd.

Blk 71 Ayer Rajah Crescent
Ayer Rajah Industrial Estate,

Singapore
chinmay.pendharkar@

sonoport.com

Peter Bäck
Sonoport Asia Pte. Ltd.

Blk 71 Ayer Rajah Crescent
Ayer Rajah Industrial Estate,

Singapore
peter.back@sonoport.com

Lonce Wyse
Communication and New

Media Department
National University of

Singapore
11 Computing Drive,

Singapore
lonce.wyse@nus.edu.sg

ABSTRACT
At Sonoport, we migrated our Dynamic Sound Engine from
Adobe’s Flash technology to Web Audio. The difference
in approaches to threading, scheduling and parameters be-
tween Flash and Web Audio created a few challenges for
us. These differences and some peculiarities of Web Au-
dio required workarounds to be able to implement our Dy-
namic Sound Engine in Web Audio. In this paper we discuss
three of these workarounds dealing with creating Parame-
ters, scheduling operations and playback position of buffers,
and explain how these work-arounds, although not optimal
solutions, allowed us to support our use cases. Finally we
look at how the upcoming AudioWorker change in the Web
Audio specification, will be affecting these workarounds.

Categories and Subject Descriptors
H.5.5 [Information Systems]: Information Interfaces and
Presentation (HCI)—sound and music computing

General Terms
Design

Keywords
Interactive Audio, W3C Web Audio API, Audio Synthesis

1. INTRODUCTION
Before the introduction of HTML5 and the modern web

platform, plugins like Adobe’s Flash and Sun Microsystem’s
Java were the only means of creating and consuming rich
interactive experiences on the web. HTML5 and the re-
lated web standards, especially the Web Audio standard,
enabled the creation of rich interactive experiences using
native browser capabilities instead of relying on plugins.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web Audio Conference ’14, January, 2014, Paris, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Sonoport’s Dynamic Sound Engine was developed prior
to the introduction of the modern web platform and hence
was based on Adobe’s Flash and related technologies. In the
beginning of 2014, with a significant percentage of browsers
now supporting the Web Audio API standard, we decided to
migrate the dynamic sound synthesis engine from Flash writ-
ten in ActionScript 3 to Web Audio developed in JavaScript.

While the Web Audio specification is still evolving, many
browsers like Chrome, Safari and Firefox provide a stable im-
plementation to develop and test the sound synthesis engine
against. However, there were significant differences in some
of the fundamental approaches these two platforms (Flash
and Web Audio) take, that had to be overcome during this
migration.

In this paper, we describe some of the major constraints
we had to work around in this migration, the techniques
we used to work around them as well as the effectiveness of
these techniques in typical use cases. Finally, we also look at
how the upcoming changes to the Web Audio specification
may change these constraints.

Since the Web Audio specification is constantly changing,
we will be referring to 2012 version of the specification [5]
which is implemented by most of the browsers. The newer
changes to the specification may or may not have been im-
plemented by browsers at the time of writing.

2. FLASH TO WEB AUDIO

2.1 Dynamic Sound Engine
Sonoport’s Dynamic Sound Engine is a collection of Sound

Models which share a common infrastructure for connecting
with the underlying audio framework, scheduling sounds and
dealing with threading for polyphony. Sound Models are
parameterized algorithms for generating a class of sounds
that run in real time. The Sound Models generally expose
a set of parameters, which can be adjusted in real time, as
well as actions, such as play and pause, that can be invoked
on these Sound Models.

Sonoport’s Dynamic Sound Engine was originally devel-
oped from a similar technology which was implemented in
Java called Asound [9]. It was then migrated to Adobe’s
Flex Framework. The work done in those projects was mi-
grated to work with Adobe’s Flash on the Web platform
creating the Sonoport’s Dynamic Sound Engine.

2.2 Threading in Flash
Most interactive sound engines work by generating small

chunks of audio data in real time. For example the Sound
object in Flash uses a chunk size in the range 2048-8192
bytes. These chunks are sent to the underlying audio sys-
tem to be played out. When the underlying audio system
runs out of data to play, it requests, usually through a func-
tion callback or an event, more data from the sound engine.
Given the constant sampling rate of the audio being played
back, these requests for audio data occur at regular intervals.
This request for audio data needs to be completed within a
specific amount of time, usually defined by the arrival of the
next data request. If that constraint is not fulfilled then the
audio may drop out or glitch.

The underlying threading model significantly affects the
interaction of this audio data requests with the rest of sound
engine as well as the rest of the application running on the
system. If the request occurs in its own dedicated thread,
a so called audio rendering thread, it doesn’t interfere with
or block the running of the rest of the system. However,
this also mean that any data generated by the sound en-
gine needs to be passed over to this audio rendering thread.
Similarly, thread synchronization needs to happen for pa-
rameter values to ensure that parameters only get changed
at appropriate instances (a-rate or k-rate [4]).

Adobe’s Flash framework uses the other approach where
the requests for audio data (from Flash Player version 10
onwards) [2] are made in a common thread (the so called
Primordial Worker) which is shared by the entire applica-
tion. While this reduces the complications of thread syn-
chronization, this also means that any other part of the
application, like the user inputs, the graphics framework,
etc, might block this common thread not allowing the audio
engine to process the audio data request in time. Thus caus-
ing clicks and glitches in the audio. To work around this,
larger chunks can be used to allow for longer time between
requests or ring buffers can be used to generate the data in
advance, however, these approaches increase the latency of
interaction in the audio engine, which is not preferable.

Since Sonoport’s Dynamic Sound Engine was implemented
in Flash, it had to trade-off between latency and avoiding
glitches.

2.3 Web Audio and the ScriptNode
The Web Audio specification deals with threading of the

audio rendering in two distinct ways. There are two Web
Audio AudioNodes which generate audio, AudioBufferSource-
Node and OscillatorNode. Both of these are implemented
natively in the browser and handle the audio data requests in
a separate audio rendering thread. The user application can
interact with these nodes by assigning buffers of audio data
to these AudioNodes or setting various parameter on these
AudioNodes. This approach hides the complexity of thread
synchronization by exposing a much simpler interface to the
user. However, that restricts the kind of audio that may be
generated to oscillating sounds and pre-rendered buffers.

The ScriptNode in the Web Audio takes another approach
and provides a mechanism for the user application to reply
to the audio data request (an onaudioprocess Event) in
JavaScript. This is a very similar to the approach taken by
Adobe’s Flash framework, where the requests are handled in
a common thread. In the case of Web Audio this common
thread is the JavaScript event loop. Hence the ScriptNode

Higher Level Audio Node

WebAudio

AudioNode

WebAudio

AudioNode

connect connectconnect

external parameter internal

parameter

external method internal

method

Figure 1: Composing higher level audio node using
Web Audio AudioNodes

suffers from the same vulnerability to other parts of the
user application blocking the event loop from processing the
audio data request.

In the case of a dedicated music app, or a game where the
various aspect of the application are under the users control,
it might be possible to guarantee that all other aspects of
the application would not block the event loop from process-
ing the onaudioprocess Event. However, when creating a
generic dynamic audio engine which might be used in vari-
ous, as yet unknown, applications, such a guarantee cannot
be made. This opens up the possibility of a glitch or dropout
in the audio, which make for a terrible audio experience.

Hence, we decided while we were moving Sonoport’s Dy-
namic Sound Engine to Web Audio to avoid using the Web
Audio ScriptNode to generate audio data. The ScriptNode
however was used in certain specific cases to synchronize the
playing of other AudioNodes.

2.4 Higher Level AudioNodes
AudioNodes are the fundamental building blocks of Web

Audio. While the ScriptProcessor Node allows building
of an AudioNode that does custom audio synthesis or pro-
cessing, since we were avoiding using that, we had to create
Sound Models by composing multiple other AudioNodes as
shown in Figure 1.

Sound Models were designed as higher level audio nodes,
which behaved just like other AudioNodes in terms of func-
tionality they exposed like connections methods, action meth-
ods and parameters. These higher level audio nodes inter-
nally managed multiple interconnected AudioNodes to syn-
thesize and process the audio as required. This implied that
Sound Models could be used as new AudioNodes as long as
they were first in the chain of Nodes. This approach works
well as all Sound Models are designed as sound creating
Nodes rather than processing Nodes.

This is similar to the jsnode approach implemented by
Subramanian S. [6] although jsnode uses a ScriptNode to
create higher level nodes. But since we wanted to avoid the
use of ScriptNode, our approach allowed wrapping around
any other AudioNode. This, however, made managing Pa-
rameters more complicated.

3. PARAMETERS IN WEB AUDIO
AudioNodes in Web Audio have parameters of type Audio-

Param, which can be used to change the behaviour of the

AudioNodes. These AudioParams are defined on the Audio-
Node based on the AudioParam Interface defined in the Web
Audio specification. However currently, no mechanism exists
to implement custom AudioParams on a generic JavaScript
object. We needed custom AudioParams defined on the
higher level audio nodes or Sound Models.

To keep the API of our Sound Models and the native
AudioNodes consistent we devised a wrapper around Audio-
Params. These pseudo-AudioParams were plain JavaScript
object that expose an AudioParam like interface. However,
they interact with AudioParams on internal AudioNodes in-
side a Sound Model. In such cases where there are no appro-
priate underlying AudioParams, these pseudo-AudioParams
will emulate AudioParams in JavaScript.

3.1 Wrapped AudioParams
Within the browser implementations of Web Audio, the

AudioParams are native JavaScript Objects which conform
to the AudioParam Interface definition of the Web Audio
specification. The AudioParam Interface defines a couple of
properties on the AudioParam and a set of parameter value
automation methods, listed in Table 1. These method au-
tomatically change the value of the parameter over time.
The methods are executed in the rendering thread and work
synchronously with respect to the actual audio data being
generated or synthesized.

To work around the inability to create AudioParams we
have to mimic the properties and the methods exposed by
the AudioParam interface. This wrapper around AudioParam,
which we call SPAudioParam, can then be exposed on a
Sound Model to be used similarly to an AudioParam.

3.2 SPAudioParams
A wrapped parameter, an SPAudioParam, can easily cre-

ated on any JavaScript Object, like a Sound Model Object,
using the JavaScript Object.defineProperty API. With
this API, a setter method can be defined to either, change
the internal variables or, set one or more AudioParams of
the internal AudioNodes, when the value of SPAudioParam
is changed. This is an effective and clean parameter abstrac-
tion for the value and defaultValue properties of Audio-
Params.

However, wrapping around parameter automation meth-
ods is slightly more complicated. Two approaches can be
taken for wrapping around the parameter automation meth-
ods. If the SPAudioParam can be linked to one or more
AudioParams on AudioNodes internal to the Sound Model,
then the wrapper can just pass along those method calls to
the parameter automation methods to the internal parame-
ters. We call this the Wrapped SPAudioParam approach.

In the Wrapped SPAudioParam approach there is no spe-
cific requirement on the relationship between the external
SPAudioParam and the internal AudioParam. A mapping
function can be specified at the point of creation to convert
the value of the external SPAudioParam to the appropriate
value for the internal AudioParam.

The other approach is to mock the parameter automa-
tion using JavaScript’s setInterval timer functionality. We
called this the Mocked SPAudioParam approach. The math-
ematical formula to calculate the value of the automated pa-
rameter at various time instances are given in the Web Audio
specifications [5]. These can be implemented in JavaScript
using an interval timer triggering at some predefined small

Sound Model

AudioNode

Internal

Variables

AudioParam

AudioNode

AudioParam

AudioParam

Mocked

SPAudioParam
setter

Mapping

Function

Mapping

Function

 Timer

Wrapped

SPAudioParam

setter

parameter

automation

parameter

automation

Figure 2: Comparison between the two approaches
for wrapping AudioParams

time interval. Figure 2. shows difference between the two
approaches for wrapping the AudioParams

The Mocked SPAudioParam approach is a suboptimal and
an inaccurate solution as setInterval is not guaranteed to
fire with millisecond accuracy. Furthermore, the values of
the internal properties are only updated every time the timer
fires, making it inaccurate during the time interval in be-
tween two timer callbacks. Hence, instead of the smooth
parameter automation changes as defined by the Web Au-
dio specification, these parameters change with a step func-
tion. Furthermore, the Mocked SPAudioParam approach
can’t emulate the interaction of overlapping parameter au-
tomations accurately and can cause unexpected behaviour.

The Wrapped SPAudioParam approach worked well and
was used throughout the implementation of the Dynamic
Audio Engine. In a few cases we had to implement the
SPAudioParam using the Mocked SPAudioParam approach,
since there was no appropriate internal AudioParam avail-
able.

However, in certain situations where specific SPAudio-
Param need not be automated, or did not need highly ac-
curate scheduling (for example, a parameter for describing
the number of times playing a buffer is to be looped be-
fore it is automatically stopped, maxLoops), the mocked
SPAudioParam approach provided a viable alternative that
still exposed a consistent interface for SPAudioParam.

4. QUEUES AND SCHEDULING
Queues are an essential aspect of any Dynamic Audio En-

gine. Queues allow operations, like those listed in Table 2.,
defined on certain Sound Models to be scheduled for the
future and processed just in time. While Web Audio sup-
ports scheduling of method calls and parameter changes, it
doesn’t provide for a way to unschedule a specific event or
to change the timing, argument or parameters of an event
once it is scheduled.

Table 1: AudioParams Parameter Automation Methods
Method Name Description
setValueAtTime Schedules a parameter value change at the given time.
linearRampToValueAtTime Schedules a linear continuous change in parameter to the given value.
exponentialRampToValueAtTime Schedules an exponential continuous change in parameter value from to the given value.
setTargetAtTime Start exponentially approaching the target value at the given time with given rate.
setValueCurveAtTime Sets an array of arbitrary parameter values.

Table 2: Operations performed by a Queue
Operation Description
PLAY Starts playing a voice
STOP Stops playing a voice
RELEASE Decays the volume of a voice and stops
SETSOURCE Sets a buffer as the source for a voice
SETPARAM Sets a parameter on a voice Sound Model

Queues are also important in polyphonic audio synthesis
when multiple voices are playing or synthesising different
parts of the audio. With multiple voices, queues can be
used to hold a series of operations, which can be assigned to
different voices based on which voices are busy and which
voices are free. A queue will ensure these operations are
executed at the stipulated time.

Finally queues also allow dependent operations to be sched-
uled and executed in the correct order. This is important in
scenarios where the operation like PLAY can’t proceed before
a SETSOURCE operation is executed on a specific voice.

4.1 Queue Model
The queue model we implemented is based on a scheduler

created using the JavaScript requestAnimationFrame API
which is designed for use with HTML5 Canvas. However,
it has been proven to have less jitter than the setInterval
API by Wyse and Subramanian [10]. The queue dispatches
any operations which are due within 16ms (corresponding to
a 60 millisecond refresh rate) using Web Audio to schedule
the operations accurately. So the queue is responsible for
a larger time frame aspect of the scheduling and the Web
Audio methods do the accurate scheduling of the operations.
This two clock approach originally highlighted by Wilson [8]
yields a queue that is accurate as well as controllable.

The queue model works with all Web Audio operations
which are are schedulable and take in a timestamp as a
parameter. These operations are executed exactly at the
instance of time in the timestamp. However certain opera-
tions are non-schedulable in Web Audio, for example, set-
ting the buffer property of an AudioBufferSourceNode or
setPeriodicWave method on an OscillatorNode. Hence it
is difficult to incorporate these operation in the queue model.

Our first attempt was to mimic Web Audio style schedul-
ing of these non-schedulable operation using JavaScript’s
setTimeout API. However, this approach failed to work in
situations where the order of operations was critical. Since
setTimeout API isn’t millisecond accurate, there were situ-
ations where although a PLAY operation on a specific voice
was scheduled after a SETSOURCE operation, the actual exe-
cution order was reversed and the PLAY operation was called
before the AudioBuffer was assigned by the SETSOURCE op-
eration. This caused no sound being played out and made
for a bad audio experience.

One workaround to deal with this could be to execute
all non-schedulable operation, like SETSOURCE significantly
ahead of their stipulated timestamp. This ensures that they
have been executed at the time defined by their timestamp.
However this mean the order of the queue is completely vi-
olated and could cause problems if that voice is being used
for other operations exactly when this non-schedulable op-
eration was executed.

4.2 Voices and Polyphony
Redesigning how voices and polyphony worked was the so-

lution for being able to accurately queue the non-schedulable
operation.

Traditionally a polyphonic synthesis engine would have a
limited by the number of voices, usually limited by the hard-
ware oscillators there exist, or on computer systems, lim-
ited by CPU speed or memory available. However, with the
modern Web platform running on powerful CPUs, these are
rarely limiting factors. Nonetheless polyphonic voice based
synthesis engines are still designed with a limited number of
voices which are recycled when their previous set of oper-
ations are completed. This design also helps to reduce the
memory footprint of the synthesis engine.

4.3 Garbage Collection
Web Audio has been designed to run on the modern day

JavaScript Virtual Machines with advanced garbage collec-
tion. Fink S. [3] gives a great primer to the how garbage
collection works in Firefox’s SpiderMonkey JavaScript Vir-
tual Machine. In general the design encourages creation of
as many AudioNodes as necessary and leaving them to be
garbage collected when they’re not needed anymore. This
is further encouraged by having some AudioNodes enforce
a single use policy. For example, the AudioBufferSource-
Node can only be started and stopped once, after which, the
AudioBufferSourceNode has to be discarded.

The Web Audio specification also implies that the native
implementation of the AudioNodes would handle caching
of buffers and memory to ensure that repeated allocation
of AudioBufferSourceNode would be optimized for perfor-
mance.

This approach makes the garbage collection algorithm crit-
ical and in cases where AudioNodes are being created rapidly,
the ability of the garbage collection algorithm to quickly and
effectively collect AudioNodes that have finished playing, en-
sures a smooth operation. The Web Audio specification also
highlights the mechanism with which the garbage collection
algorithm can collects finished AudioNodes.

4.4 Single Use Voices
The redesigned polyphonic voices in our Dynamic Sound

Engine used the approach that Web Audio suggests of creat-
ing as many AudioNodes as needed and ensuring that they
are garbage collected by removing all references to them.

Instead of limiting the number of voices, we can create more
voices as and when we need them. By not having to recycle
voices, some of the constraints on the timing of the opera-
tions can be relaxed. This allows operations like SETSOURCE
to be executed far before their due time since the voice they
are being executed on is a new voice and there is no danger
of affecting any previous operation in progress.

This fire and forget method for implementing voices al-
lowed us to scale queues and schedule up to 60 operations
per second with certain Sound Models with negligible jitter.
However that requires creation of many new voices every sec-
ond. With each voice having a GainNode to support ADSR
Envelope the number of AudioNodes to be created per op-
eration is doubled.

Taking this approach implied we had to ensure that the
voices that had been used up were definitely garbage col-
lected at the next garbage collector pass. We did this by
ensuring the relevant voices did not have a playing Audio-
BufferSourceNode or a OscillatorNode and that all ref-
erences to these voices and any internal AudoNodes were
discarded. To ensure there was no memory leaks from this,
memory profiling tools in both Chrome and Firefox were
used.

5. BUFFERS AND PAUSING
Pausing a playing sound at a given instant and restart-

ing it from the exact playback position where it stopped
is a common use case needed in implementing a Dynamic
Sound Engine. However the single use design of the Audio-
BufferSourceNode in Web Audio makes implementing this
behaviour harder. While there is a mechanism for start-
ing the playback of a AudioBufferSourceNode at a given
playback position which is accurate to a sample, knowing
exactly where a AudioBufferSourceNode stopped is not so
straightforward.

5.1 Tracking Playback Position
A naive approach is to count the time between when the

AudioBufferSourceNode is started and when it is stopped.
This approach works when the playbackRate parameter of
the AudioBufferSourceNode is unchanged, since the play-
back position only advances at a constant rate for the time
interval the AudioBufferSourceNode is being played. Since
the start and the stop operations are called with sample ac-
curacy it is possible to get the accurate time between them.
However, with a changing playbackRate this calculation get
more complex.

We tried this approach initially. To support tracking of
the current playback position all operations on the playback-
Rate parameter of AudioBufferSourceNode were intercepted
and tracked. Everytime the value of playbackRate was set,
the current timestamp was used to update the tracking of
the playback position. However, it became much more com-
plicated when we tried to intercept parameter automation
methods. Not only because of the slightly different internal
implementations of these automation algorithms in various
browsers but also the way multiple parameter automation
requests interact when they are invoked with an overlapping
time range.

As we implemented this we realized that we were basi-
cally reimplementing parameter automation as implemented
by the browsers. This was an unsustainable approach, we
would have to keep tracking the browsers if they change their

SPAudioBu�erSourceNode

connect

ScriptProcessorNode

scope
010

AudioBu�erSourceNode

counter

AudioBu�erSourceNode

source

start/stop

playbackRate

playbackPosition

bu�er

Figure 3: SPAudioBufferSourceNode - a work
around to count current playback position

implementation and also adjust for newer browsers which
might want to support Web Audio.

5.2 Counting Playback Position
In the approach we finally took, we composed a higher

level AudioNode, which we call SPAudioBufferSourceNode,
that contains the AudioBufferSourceNode whose playback
position we are trying to track.

This higher level AudioNode contained a second Audio-
BufferSourceNode. This new AudioBufferSourceNode, which
we call the Counter Node, is assigned a buffer which has
monotonically increasing integer values which represents the
index in the buffer that value is at.

This Counter Node is connected to a ScriptNode, which
we call Scope Node. The Scope Node gets the audio data
output from the Counter Node and keeps track of the value
of the last frame of audio data it gets for every audio data
request or chunk. The Scope Node also ensures that the
audio data it sends forward in the processing chain is all
zeros thus not affecting the output audio.

This Scope Node is connected to the same output node as
the original AudioBufferSourceNode whose playback posi-
tion we are trying to track.

Web Audio ensures that both inputs, the Counter Node
connected to the Scope Node as well as the original Audio-
BufferSourceNode are played out in sample accurate syn-
chrony. Figure 3 demonstrates the connections of an SPAudio-
BufferSourceNode.

By tying the start and stop method calls as well as
any changes to the playbackRate, including parameter au-
tomation methods, on this new SPAudioBufferSourceNode
to both the internal AudioBufferSourceNodes we can en-
sure that the value of the audio data in the Scope Node will
correspond to the current playback position in the original
AudioBufferSourceNode.

We had to use a ScriptNode here as there was no other
way to track the playback position of the AudioBuffer-
SourceNode whilst still avoiding ScriptNode.

It is important to realize that the position we’re tracking
would be inaccurate while the AudioBufferSourceNode is
playing since by the time we retrieve the position, the play-

back would have proceeded forward. But it is very accurate
for finding out at which position an AudioBufferSourceNode
stopped playing.

With this structure in place, a playing Sound Model could
be paused by stopping it and storing it’s playback position.
When it was requested to continue playing, the playback po-
sition could be used as a starting position for a new Audio-
BufferSourceNodes. This approach allowed for an pause
and unpause experience, which although not sample accu-
rate, was sonically accurate enough for our use case.

6. AUDIO WORKER
The Web Audio specification is being updated and there is

an upcoming major change [1] to improve some of the func-
tionalities. This change is still being discussed [7] and agreed
upon and has not yet been implemented by the browsers at
the time of writing this paper.

The most critical addition in this proposed change is the
ability to create an AudioWorker. An AudioWorker allows
the audio data requests to be handled in a background thread
using the WebWorker technology to implement threading.
This solves a lot of the issues discussed in Section 2.3 about
ScriptNodes. With the AudioWorker, ScriptNode like func-
tionality becomes viable without the risk of being blocked
by other part of the application.

This addition to Web Audio solves almost all the problems
we have faced. With an open ended customizable AudioNode
available, many of the schemes we had used in the original
Flash design could be brought back to Web Audio without
the risk of audio glitches. There may still be cases where
using the natively implemented AudioNodes like GainNode
or even AudioBufferSourceNode is appropriate for perfor-
mance reasons. If more granular levels of control are called
for and performance is a lesser concern than an AudioWorker
can be used.

The AudioWorker updates will also add the ability to cre-
ate AudioParams on the AudioWorker. These AudioParams
will support parameter automation and provide sample ac-
curate parameter values to the callback handling the audio
data request. This will finally provide a means to have a
complete, reliable and robust AudioParam on Sound Models.

While playback position of a AudioBufferSourceNode might
not be available, it can easily be implemented and property
on an AudioWorkerâĂŃ. Since the playback of audio would
be done internally in the AudioWorker, tracking the play-
back position and exposing it as an external property would
be trivial.

Finally, all operations on Sound Models implemented with
AudioWorker can be made scheduled by passing in a times-
tamp. The actual performance of the implementation of
operation dispatch is yet to be seen but this approach will
definitely yield a more robust design with lesser chances of
glitches and drop outs.

7. CONCLUSIONS
We ported a Dynamic Sound Synthesis Engine from Adobe’s

Flash platform to Web Audio. Due to the differences in the
architecture many structures of the engine had to be re-
designed to work with the constraints of Web Audio. Some
peculiarities of Web Audio, like single use AudioNodes, in-
ability to create AudioParams and lack of access to playback
position were worked around with various techniques. Most

of these workarounds did not completely solve the problem,
but did have a solution in specific use cases that were needed
for the Dynamic Sound Synthesis Engine. Finally, we believe
the upcoming AudioWorker updates to Web Audio can solve
most of the issues we faced. However, the performance of do-
ing most of the computation in JavaScript using the Audio-
Worker as opposed using native AudioNodes remains to be
seen.

8. REFERENCES
[1] P. Adenot and C. Wilson. Web Audio API W3C

Editor’s Draft 15 October 2014. http://webaudio.
github.io/web-audio-api/#the-audioworker,
October 2014.

[2] Adobe. Sound - Adobe ActionScript 3 (AS3) API
Reference. http://help.adobe.com/en_US/
FlashPlatform/reference/actionscript/3/flash/
media/Sound.html, October 2014.

[3] S. Fink. Clawing our way back to precision |
javascript. https://blog.mozilla.org/javascript/
2013/07/18/clawing-our-way-back-to-precision/,
July 2013.

[4] M. D. Network. Audioparam - web audio api.
https://developer.mozilla.org/en-US/docs/Web/
API/AudioParam, September 2014.

[5] C. Rogers. Web Audio API - W3C Working Draft 13
December 2012. http:
//www.w3.org/TR/2012/WD-webaudio-20121213/,
December 2012.

[6] S. Subramanian. steller/jsnode.js at
experimental buildsys - srikumarks/steller.
https://github.com/srikumarks/steller/blob/
experimental_buildsys/src/models/jsnode.js,
January 2013.

[7] O. Thereaux. Worker-based scriptprocessornode.
https:
//github.com/WebAudio/web-audio-api/issues/113,
October 2014.

[8] C. Wilson. A tale of two clocks - scheduling web audio
with precision. http://www.html5rocks.com/en/
tutorials/audio/scheduling/com, January 2013.

[9] L. Wyse. A sound modeling and synthesis system
designed for maximum usability. In Proceedings of the
International Computer Music Conference, pages
447–451, Singapore, 2003.

[10] L. Wyse and S. Subramanian. The viability of the web
browser as a computer music platform. Computer
Music Journal, 37(4):10–23, Winter 2014.

