
A Voice Interface for Sound Generators: adaptive and 
automatic mapping of gestures to sound 

 
 

Stefano Fasciani1,2            Lonce Wyse2,3 
1Graduate School for Integrative Sciences & Engineering 

2Arts and Creativity Laboratory, Interactive and Digital Media Institute 
3Department of Communications and New Media 

National University of Singapore 
{stefano17, lonce.wyse}@nus.edu.sg 

 
ABSTRACT 
Sound generators and synthesis engines expose a large set of 
parameters, allowing run-time timbre morphing and exploration 
of sonic space. However, control over these high-dimensional 
interfaces is constrained by the physical limitations of 
performers. In this paper we propose the exploitation of vocal 
gesture as an extension or alternative to traditional physical 
controllers. The approach uses dynamic aspects of vocal sound 
to control variations in the timbre of the synthesized sound. The 
mapping from vocal to synthesis parameters is automatically 
adapted to information extracted from vocal examples as well 
as to the relationship between parameters and timbre within the 
synthesizer. The mapping strategy aims to maximize the 
breadth of the explorable perceptual sonic space over a set of 
the synthesizer’s real-valued parameters, indirectly driven by 
the voice-controlled interface. 

 
Keywords 
Voice Control, Adaptive Interface, Automatic Mapping, 
Timbre Morphing, Sonic Space Exploration. 

1. INTRODUCTION 
The growing computational power of general-purpose and 
digital signal processors has enabled a dramatic increase in the 
complexity of sound synthesis algorithms able to execute under 
continuous parametric control in real time. In electronic and 
experimental musical genres the exploitation of instrumental 
timbral manipulation is becoming more pervasive along side, or 
as an alternative to traditional note-based control. At the same 
time communication protocols such as MIDI and OSC are 
evolving to empower performers to exploit the growing musical 
potential of digital musical interfaces. 

Two main limitations within the current state of affairs have 
become apparent. The first is a lack of design consideration in 
interfaces integration and cooperation. The issue of how a 
performer can make simultaneous use of multiple interfaces is 
rarely addressed. A single interface can demand all of a 
performer’s interaction bandwidth, preventing the parallel use 
of another control device. Most of the commonly used musical 
interfaces exploit interaction via the hands (tactile, haptic, 
gestural). As a result, the number of events and parameters 
under the direct control of the user at any given time remains 

constrained despite the rich interfacing capabilities offered by 
control devices. 

The second limitation is common in the design of general-
purpose interfaces. Although they have the benefit of flexibility 
and reusability, they are not tailored to work with specific 
instruments. Extensive manual intervention is necessary to 
define and implement mappings for a particular pairing of 
interface and instrument. The relationship between sensor 
signals and synthesis parameters is often programmed as a one-
to-one mapping or as a one-to-many mapping. The first case 
puts a limitation in timbre morphing potential, due to the 
limited number of sensors simultaneously controllable by the 
performer, while the second case inherently reduces the 
explorable sonic spaces. The many-to-many relationship [1] 
can lead to more appealing mappings, but it presents challenges 
in their manual definition, especially if the dimensionality is 
high and if continuity and differentiability are required [2]. 
Capturing and exploiting dependencies, correlations and 
nonlinearities between control parameters and sound is a non-
trivial balancing act between these trade-offs. 
The work described in this paper addresses these limitations 
proposing the use of vocal gesture to control time-continuous 
and real-valued sound synthesis parameters, an automatically 
generated many-to-many mapping, and the adaptation to the 
relationship between synthesis parameter and perceptual sound 
features. In the authors’ pragmatic approach, the human voice 
is chosen as a source of gesture because it can be considered as 
“spare bandwidth” [3] for performers engaged with instrument 
interfaces, especially in the field of electronic music. Moreover 
the simultaneous use of voice along with other body gestures is 
a natural human capability, and has the benefit of providing and 
additional layer of control without any hardware dependencies 
other than a microphone. From this perspective, the unused 
resources of the voice present a tremendous opportunity. The 
mapping strategy developed herein creates a relationship 
between vocal gestures and perceptually related features 
computed on the synthesized sound without the explicit 
introduction of perceptual intermediate layers [4].  

2. RELATED WORK 
The Singing Tree [5], part of the Brain Opera installation, was 
one of the first systems which extracted a large set of vocal 
features to drive a set of Digital Musical Instruments (DMIs), 
re-synthesizing the human voice with the sound of an 
ensemble. Despite certain limitations such as its fixed mapping, 
based on prior knowledge about vocal gesture and instruments, 
it demonstrates the potential of voice for interaction with DMIs. 

The Gesture Follower [6] and the Wekinator [7] offer 
solutions to map generic gesture to synthesis parameters. Both 
flexibly define the mappings, and they specifically address the 
continuous generation and modulation of an output signal. 
However, these systems are not specifically designed to work 
with a vocal input signals and do not consider the effect that the 
generated parameters have on the output sound of the DMI. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
NIME’12, May 21-23, 2011, University of Michigan, Ann Arbor. 
Copyright remains with the author(s). 
 



Manual intervention to define the mapping with the DMI still 
plays a central role and is often a challenging task. The Gesture 
Follower is based on a left to right Hidden Markov Model, 
while the continuous parameter component of the Wekinator, is 
based on neural networks. The first presents causality 
constraints, the second requires manual intervention to generate 
a set of input-output pairs for the training phase, which may 
need to be very large in case of nonlinear mappings. 

The Singing-Driven Interfaces for Sound Synthesizer [8] 
address the use of voice to control sound synthesis. The author 
proposes a system based on the imitation of the instrument’s 
sound by the user, performing a temporal segmentation of the 
vocal signals based on syllables, and transforming voice-
specific features into instrument features. The system generates 
a score and one continuous parameter for minor timbre 
modulation. The main limitation of this approach is a missing 
deep control of the instrument timbre, which is considered 
nearly fixed once a target instrument is selected. 

In Making Music Through Real-Time Voice Timbre Analysis 
[9], two approaches are presented. In the first one, discrete 
event-based, vocal features are used for drum synthesis control 
by vocal beatboxing. In the second one, vocal timbral features 
are continuously “remapped” into the synthesizer timbral 
features space through a linear piecewise transformation of the 
principal components or with a regression tree transformation. 
In both cases the nearest neighbor identifies the unique 
correspondence between the two spaces. The choice of identical 
timbral features spaces for the voice and the synthesizer 
simplifies the system but is also a limitation. Furthermore, the 
rigid selection of features, especially on the voice timbre space, 
does not help to cope with the intra speaker variability. 

3. AUTOMATIC ADAPTIVE MAPPING 
The fundamental goal of this work is to dynamically modify the 
synthesis timbre using dynamics in the vocal sound. Since the 
voice-controlled interface we develop creates a many-to-many 
mapping relation, the dimensionality of the spaces with 
dependencies, correlations, and nonlinearities, can be 
challenging to human understanding. The automatic mapping 
generation and adaptation not only relieves the user from a 
tedious task, but it is the only practical way to proceed. The 
adaptation is based on deterministic and statistical information 
learned from an analysis of the target DMI behavior and of the 
user vocal gestures. With this approach we aim to maximize the 
coverage of the DMI’s perceptual feature space given the range 
of vocal gestures. Figure 1 shows a functional scheme of the 
proposed approach. Users specify their intention by providing 
vocal examples and identifying the target control parameters of 
the DMI. The system automatically analyzes invariant and 
dynamic features of the voice, finds a relationship between the 
DMI’s control parameters and the perceptual features of the 
resulting sound, and generates the mapping. Thereafter during 
run-time, the DMI parameters are driven by the live vocal 
input. We assume that the control parameter-to-perceptual 
features is deterministic and one-to-one, so that the sound 
descriptors generated by the mapping can be converted back to 
DMI parameters. If the relationship is not one-to-one, we adopt 
a strategy to minimize potentially noisy output that could result 
from the non-invertability as described in Section 3.3. 

3.1 DMI parameters-to-sound analysis 
We consider the DMI as a black box and use no prior 
knowledge about the synthesis model. To retrieve the necessary 
information we explore systematically of the input parameters 
in relation to the output sound. Equations (1-3) relate the DMI 
target time-continuous real-valued parameters CTx and the set of 
their unique combinations IT. 

 
Figure 1: High abstraction functional scheme. 

 

  (1) 

  (2) 

  (3) 

In equation (1) IT represents the set of j unique DMI target 
parameter combinations. Its cardinality is given by the product 
of the cardinality of each CTx in (2). Once j parameters and are 
selected, together with the respective maximum, minimum and 
resolution (step value) there are z unique combinations of the 
target parameter vector i (3). For the z vectors i the DMI sound 
is analyzed, to create a vector of perceptual features d. The 
synthesizer is hence projecting a control parameter vector iT 
with semantic meaning (e.g. cutoff frequency, modulation 
depth) into a perceptual feature vector d, usually with higher 
dimensionality. Vectors d are stored in matrix D, which is our 
representation of the DMI behavior. The vectors iT are stored in 
matrix I, hence through indexing it is possible to find the 
unique correspondence between di and iT,i. The audio 
descriptors stored in d capture relevant features of the DMI 
timbre in the perceptual feature space. According to [10] timbre 
perception can be reduced to a three dimensional space. This 
reduction could be accepted in sound recognition or 
classification domains, but here a prior blind dimensionality 
reduction can lead to losses in understanding the parameters-to-
sound relation. We apply a posterior dimensionality reduction 
through PCA (Principal Component Analysis) is applied to the 
entire matrix D. We retain a number of dimensions, called PC 
(Principal Components), carrying 90% of the total energy. 

3.2 Vocal gesture analysis 
The abstraction level of the interface is close to the timbre of 
the voice with the low-level features computed from the vocal 
gesture examples. To avoid the introduction of constraints and 
to allow users to explore a variety of different vocal gestures, 
we compute a large feature set, assuming no prior knowledge 
about which subset will be the most representative set in terms 
of variation and robustness, leaving this selection to a posterior 
stage. The system expects the user to provide examples of 
invariant and dynamic vocal sound. Although the system has no 
minimum requirements, robustness and reliability increase with 
multiple examples. We compute the features over 40ms 
windows with 75% overlap and we obtain an arbitrary number 



of matrices VS,k containing vectors from invariant examples and 
matrices VD,p containing vectors from examples with vocal 
sound variation. The following steps are applied to obtain a 
matrix V as a compact representation of the vocal gesture: 

1. Analysis within the VS,k to discard noisy features, 
minimizing the distance from cluster centers. 

2. Analysis across the VD,p to discard inconsistent 
features, using a normalized standard deviation 
threshold. 

3. Merging of all vectors v into a single matrix V. 
4. Detection and removal of outlier vectors. 
5. Reduction of cluster density by vector removal. 
6. Normalization of each feature to zero mean and 

unitary standard deviation. 
7. PCA to reduce dimensionality. 

The number of clusters is one of the user-provided parameters, 
equivalent to the number of invariant sounds used in the 
examples. In step 4, a vector is considered an outlier and 
discarded only when two conditions are met: the distance from 
its cluster center is larger than a threshold distance, and the 
distance from all others cluster centers is bigger than the inter-
cluster center distance. At the end of this process the matrix V 
contains the principal components carrying 90% of the total 
energy. Independence (or at least uncorrelated as ensured by 
PCA) vocal features ensure “freedom of navigation” within the 
multidimensional sonic space D, without restricting the action 
to sub-regions or to specific trajectories. 

3.3 Mapping strategy 
The mapping is based on the triplet of matrices D, I and V. Its 
role is to apply a transformation m on a vector v that generates 
a vector d from which we retreive the correspending parameter 
vector i. The main challenges are represented by the different 
number of elements, different dimensionality, and embedded 
information between D and V. The transformation m is based 
on computed statistical information since the number of 
elements in D and V is not uniform. The number of PCs 
considered for the mapping is set to the smallest between D and 
V after the truncation to 90% of total energy. If D is truncated, 
the vocal gesture is not articulated enough to fully explore the 
sonic space D. If V is truncated, the vocal gesture is over 
articuleted. Only the first case presents limitations in achieving 
full control over the DMI sonic space. We transform each PC 
of V to a PC of D, respecting their variance ranking. The 
transformation is based on the densities of every PC of V and 
D, which are estimated  from the histograms. Then we integrate 
their normalized complements to obtain the monotonic 
mapping functions. Equations (4) and (5) show the 
transformation of each principal component of v into a 
principal component of d, maximizing the overlap between 
densities of each. 
 

 
 

(4) 

  (5) 

Equation (5) describes the mapping function which is applied 
twice in (6) to obtain the principal component in d from those 
in v. Figure 2, presents an example of densities, distribution and 
mapping functions mv,d for the first principal component of the 
voice and DMI data. The mapping process executes the 
following steps: every principal component of a vector v, 
represented as a point along the x axis, is mapped to the y axis 
through the mv function in the left figure. It is then mapped 
though the inverse md in the right figure down to a point on the 
x axis which represents the principal component of d. 

 

 

Figure 2: Examples of mapping functions, distributions, 
and densities of the first vocal principal component (left) 

and the first DMI principal component (right). 
 

 
Figure 3: Run-time mapping data and processing flow. 

 
The run-time mapping in Figure 3 shows the dataflow from 
voice to DMI parameters. The preprocessing stage, normalizes 
and projects the input to vocal vectors v. It also includes an 
optional gate operating on input energy level to inhibit output 
when the signal level is low. The projected vectors v* are 
mapped into a vector d as described above. The vector d is then 
used to find the k nearest neighbors (k set to 3 but user 
modifiable) in the matrix D, with the corresponding iT vectors. 
Their average is used to drive the sound synthesis. Using only 
the nearest neighbor, as in [9], leads to discontinuity in the iT 
stream if the parameter-to-sound relationship is not one-to-one. 

4. PROTOTYPE & USAGE EXAMPLES 
A proof of concept prototype1 has been implemented in 
Max/MSP for the sections requiring real time computation, 
while MATLAB is used for the remaining offline parts. The 
Max/MSP prototype uses FTM [11], Gabor [12] and MnM [13] 
extensions from IRCAM, and it is integrated with Ableton Live 
using the Max For Live framework allowing interconnection 
with a state-of-the-art DAW. The Voice Analyzer patch 
computes feature vectors with a dimension of 50 including: 
energy, pitch, zero crossing rate, spectral flux, spectral centroid, 
spectral deviation, Mel spectrum centroid, Mel spectrum 
deviation, spectral flatness coefficients, LPC coefficients, MFC 
coefficients, formants frequencies and magnitude. The DMI 
Analyzer Front End and Back End patches cooperate to analyze 
the DMI behavior. Up to 6 parameters in any Live device can 
be chosen. For each parameters combination stored in a matrix, 
the second patch analyzes the audio signal of the DMI, 
generating a perceptual feature vector. These vectors, with 
dimension of 170 are stored in a second matrix, include: 
loudness, pitch, brightness, noisiness, sinusoidal components, 
the Bark scaled spectrum with 25 bins, and Mel scaled 
smoothed spectrum with 128 bins. The Run-time VCI patch  
                                                                    
1 Images of the Max For Live prototype and audio files 

available at http://anclab.org/downloads/fasciani_nime12.zip  



 
Figure 4: Spectrogram for the first example. Vocal gesture 

(top) and DMI output (bottom) showing how /a/ to /u/ 
gesture modulates the cutoff freq. The example on the left 
shows a slow variation /u/ to /a/ and /a/ to /u/. The example 
of the right shows quick and repeated /a/ to /u/ transitions. 

 
implements the mapping described in Section 3.3. Although the 
system is designed to minimize user interaction, the prototype 
patches expose options and internal parameters allow us to 
perform user evaluations of different settings. Moreover if the 
user is not comfortable with the generated mapping, it is 
possible to modify it in run-time inverting the polarity of each 
principal component. To initialize the system it is required to 
identify the target parameters with their max, min and step 
values, and to provide the dynamic and invariant vocal 
examples. After this, the mapping is generated without further 
interaction. The sound-to-parameter analysis is the most time 
consuming part, proportional to the IT cardinality (100ms per 
iT). The remaining parts, running non-optimized routines, 
requires about a minute on general-purpose machines. 

In the first example to provide the basic proof-of-concept, the 
target device is a synthesizer generating a filtered square wave 
at 110Hz. The target DMI control parameter is the cutoff 
frequency of the 12dB Low Pass filter, within the range 110Hz-
18.5KHz, equivalent to 0.19-1.0 when normalized within the 
unitary range. The scanning resolution is set to 0.007, leading 
to an IT with cardinality 104. The phonemes /a/ and /u/ were the 
basis for the vocal gestures. Two invariant examples for each 
phoneme and two dynamic examples gliding between the two 
phonemes were provided to the systems. The automatic 
mapping process discovers that only a low number of 
dimensions is carrying the majority of the energy, so the system 
limits itself to work with a maximum of 5 principal components 
with the first 2 strongly dominating. The phoneme /a/ is 
mapped to descriptors corresponding to a high cutoff 
frequency, while /u/ corresponds to a low cutoff. Figure 4 
shows the spectrogram of a dynamic vocal gesture and the DMI 
output, showing coherent, smooth and synchronous transitions 
between voice and DMI output sound. As a second more 
complex example, the DMI is the U-He Tyrell Nexus 6 
synthesizer. Five parameters are chosen, with different ranges 
and a scanning resolution of 0.1. These are: pulse width depth, 
oscillators’ shapes, the volume of first oscillator and cross 
modulation depth, which resulted in an IT with cardinality 9900. 
The vocal gesture is a variation through the entire vowel space 
with 5 clusters, given by the phonemes /a/, /e/, /i/, /o/ and /u/. 
The number of components comprising the DMI sound 
descriptors is higher in this case, while for the voice only 5 
components are considered, but with energy more evenly 
distributed among them in this case. In the audio examples file, 
a sequencer is executing a sequence of notes while the vocal 
signal drives the synthesis parameters. The parameters default 
values are selected when the input energy is low. 

5. CONCLUSION AND FUTURE WORK 
We have developed a system for mapping vocal signals to 
perceptual features for any synthesis algorithm. The prototypes 
show the validity of the approach. No end user-involvement is 
required beyond providing examples of control vocal gestures 
and the selection of DMI parameters to be controlled since the 
flow is completely automated. The user’s time can instead be 
spent on vocally exploring and learning the mapping. One 
advantage of the system modularity is the reusability of the 
individual voice and DMI analysis data, further reducing the 
setup time. The three components of the system, described in 
Section 3, can be also exploited in interfaces of a non-musical 
or non-vocal nature. An issue that remains open arises when the 
DMI sound has non-static timbre for fixed parameters. The 
current audio descriptors here are sufficient to capture only 
static features. Another issue requiring further attention is a 
more elaborate feature rejection process to address noise 
affecting the vocal features, which sporadically gives instability 
to the system. We have also yet to address the presence of 
external noise at the input of the run-time system. Since much 
of the “noise” is generated by the musicians themselves, it may 
be possible to use knowledge of this signal to address this issue. 

6. REFERENCES 
[1]  M. M. Wanderley, “Performer–Instrument Interaction: 

Applications to Gestural Control of Sound Synthesis,” 
Ph.D. Thesis, University Paris, 2001. 

[2]  D. Van Nort, M. M. Wanderley, and P. Depalle, “On 
the choice of mappings based on geometric properties,” 
in Proc. of the NIME 2004 conference. 

[3]  P. R. Cook, “Re-Designing Principles for Computer 
Music Controllers: a Case Study of SqueezeVox 
Maggie,” in Proc. of the NIME 2009 conference. 

[4]  D. Arfib, J. M. Couturier, L. Kessous, and V. Verfaille, 
“Strategies of mapping between gesture data and 
synthesis model parameters using perceptual spaces,” 
Org. Sound, vol. 7, no. 2, pp. 127–144, Aug. 2002. 

[5]  W. Oliver, J. Yu, and E. Metois, “The Singing Tree: 
design of an interactive musical interface,” in Proc. of 
the 2nd conference on Designing interactive systems: 
processes, practices, methods, and techniques, 1997. 

[6]  F. Bevilacqua and R. Muller, “A gesture follower for 
performing arts,” 2005. 

[7]  R. A. Fiebrink, “Real-time Human Interaction with 
Supervised Learning Algorithms for Music Composition 
and Performance,” Ph.D. Thesis, Princeton, 2011. 

[8]  J. Janer, “Singing-driven Interfaces for Sound 
Synthesizers,” PhD Thesis, Universitat Pompeu Fabra, 
Barcelona, 2008. 

[9]  D. Stowell, “Making music through real-time voice 
timbre analysis: machine learning and timbral control,” 
Ph.D. Thesis, Queen Mary University of London, 2010. 

[10]  J. M. Grey, “Multidimensional perceptual scaling of 
musical timbres,” Journal of the Acoustical Society of 
America, vol. 61, no. 5, pp. 1270–1277, 1977. 

[11]  D. Schwarz, N. Schnell, R. Borghesi, F. Bevilacqua, R. 
Muller, “FTM: Complex Data Structure for Max,” 2005. 

[12]  N. Schnell and D. Schwarz, “Gabor, multi-
representation real-time analysis/synthesis,” in Proc. of 
the DAFx 2005 conference. 

[13]  F. Bevilacqua, R. Müller, and N. Schnell, “MnM: a 
Max/MSP mapping toolbox,” in Proc. of the NIME 2005 
conference. 

 


