
Toward Content-Based Audio Indexing and Retrieval and aNew Speaker Discrimination TechniqueLonce Wyse and Stephen W. SmoliarInstitute of Systems ScienceNational University of SingaporeHeng Mui Keng TerraceSingapore 0511(contact: lwyse@iss.nus.sg)December 11, 1995AbstractAbstract: Several techniques for identifying segment transitions in an audio stream arediscussed. Gross features are �rst identi�ed that control more detailed and computationallyexpensive analysis down stream. Pitch is tracked using some basic streaming principles,and then used as one cue to speaker transitions. A novel speaker discrimination techniqueis described that makes segmentation decisions when a continuously updated model of thecurrent speaker suddenly ceases to su�ciently account for the input data.Keywords: Speaker discrimination, auditory streaming, audio stream segmentation,pitch tracking, nonlinear browsing.Despite the multimedia hype, video and audio information are not currently part of oureveryday computing environment. We don't yet have the tools for manipulating this kind ofinformation with the ease with which we manipulate text. The goal of the Video Classi�cationProject at ISS is to automatically segment a stream of image and sound data into meaningfulunits which can then be used in a database system [Smoliar and Zhang, 1994]. We considerthe problems of parsing input streams, automatic indexing (labeling) of segments, and retrievaltechniques. Such a system will support non-linear browsing of material and the use of sound andimage keys for retrieval, which are far more natural ways of interacting with multimedia datathan simple linear scanning. Currently, the audio and video stream parsing is done separately,however, the systems will run together, since each separate media stream contains informationthat can help the other make parsing decisions. The work reported upon here focuses on theparsing and indexing of the audio stream.The immediate goal of the audio processing is to identify transition points between segmentsand to do an initial content oriented labeling of the segments. We use a combination of signalprocessing techniques for feature extraction, and \intelligent" symbolic level processing for de-cision making. The two processes work together in the sense that some hypotheses are formedbased on initial signal processing work which in turn controls further signal processing to test,verify or re�ne the initial hypotheses.The symbolic processing includes knowledge about characteristics of some of the basic signaltypes that we expect to encounter. Currently our data testbed is news stories, and the signals can1



be grossly classi�ed as \music", \speech" and \other" for the purpose of delineating meaningfulsegments. Speech is then further broken into segments at boundaries between di�erent speakers.1 Initial ProcessingThe signal is passed �rst through a �lter which measures the amplitude envelope. Labels areattached to the signal identifying regions where energy is at some threshold percentage belowthe average where some of the following stages don't need to do any work. A 256 point FFT isthen performed.2 MusicThe \music detector" is an extension of the work by Hawley [Hawley, 1993]. No deep philo-sophical issues about what music is are being addressed here. The system computes peaks inthe magnitude spectrum, then bases its decision on the average length of time that peaks existin a narrow frequency region. We improved upon previous work by using an ERB (EquivalentRectangular Bandwidth) scaling of the frequency region [Moore and Glasberg, 1983]. Since thisscaling is log-like above 500 Hz, it tends to be more robust than a linear representation be-cause the sensitivity to peak movement is more uniform across frequency when the fundamentalfrequencies of speech or pitched musical instruments are non-stationary. Music detection is per-formed early because signals so labeled need no further analysis for our purposes. Sections thatare not labeled as music are mined for more information.3 PitchA spectrally-based pitch detection algorithm [Cohen, Grossberg, and Wyse, 1995] is employedwhich was designed to model aspects of human pitch perception. Also based on an ERB scaledenergy representation of the signal, it employs an excitatory-center, inhibitory-surround mech-anism that enhances peaks, and a weighted summation of regions around harmonics, to derivean activation strength function across pitch. It is robust under conditions of mistuned compo-nents, and models human responses to rippled noise and noise-band edges in addition to simpleharmonic complexes.The pitch model is layered, and includes a spectral representation, a contrast-enhanced spec-tral representation and �nally a pitch layer, where, in general, every pitch has some level ofactivation. The pitch detector is robust against the e�ects of certain kinds of noise. Broadbandnoise is ignored, for example, even when the signal to noise ratio (in dB) is negative. Due tothe convolution with the \Mexican hat" on-center o�-surround kernel, spectrally broad signalsare suppressed before inuencing the pitch layer. More compact signals, particularly those withenergy across several harmonically related components, are represented in the pitch layer, butunless they are specially constructed to do so, tend not to shift the peaks due to other pitchedsignals. This robustness to noise does not make this a model of multiple source segregation,however. Even a single tone creates many peaks in the pitch layer (at all subharmonics, thoughonly one is maximal), so there is no obvious way to associate source perception with any but themost salient peak. 2



In order to track the pitch of voiced speech over time, several auditory streaming constraints[Bregman, 1990] are embedded in a following processing stage. Since the pitch detector respondsto peaks and rippled noise, noise from fricatives cause peaks to appear in the pitch activationfunction, and, especially if the fricative is unvoiced, a noise peak can be the most prominent one.The resulting trace of the maximally activated pitch makes jumps that are too far in frequencyand too fast in time for humans to track as a single stream. By incorporating constraintsconcerning the relationship between the distance and the rate of frequency jumps that result ina sequence of tones either streaming together or breaking into several streams, we are able tokeep the pitch tracker following the pitch of just the voiced portion of speech. Similar constraintsconcerning energy keep the tracker from being distracted by low level pitched sounds or briefnon-speech bursts.4 Speech labelingAt this point in the pipeline, we have several representations of the signal and a stream of time-stamped labels. To label a segment as \speech," the next stage examines the pitch track insegments not already carrying a label incompatible with speech. The speech label begins witha pitched (assumed now to be \voiced") segment. The label ends with the last pitched segmentbefore a time interval greater than one second in which no pitched segment lasted more than 75ms. These criteria were empirically determined.5 Speaker DiscriminationSpeaker discrimination is an important component of segmenting an audio stream into mean-ingful subunits. Understanding when speakers change is crucial for dialogue understanding. Inthe realm of newscasts, a change in speaker almost always corresponds to a change in the thecontent, or news story. Speaker discrimination is related to speaker identi�cation and veri�ca-tion, but the latter two processes are based on a priori knowledge about a limited number ofspeaker identities, and are usually text dependent. In speaker discrimination, only knowledgeabout speech in general is embedded in the system which is text independent. For the discrimi-nation task, no matching of di�erent segments (with speakers or with each other) is done, onlytemporally local decisions about speaker changes are made. Despite the fact that \inter-speakervariation" is the bane of speech recognition, actually extracting features that are invariant forone speaker, and that di�er across speakers, is a challenging task.Humans manage to recognize a change in speaker in a very short time, so averaging measuresacross tens of seconds should not be necessary. The methods used in our system combine pitchand spectral features, and make use of timing cues as well. Before the discrimination processesrun, a segment must �rst be labeled as speech. Potential speaker transitions are agged byevents such as lengthy segments of non-speech, or sudden changes in pitch. Spectral features areextracted which are used for the �nal label assignment.5.1 Pitch-based Speaker DiscriminationChanges in pitch characteristics make an important contribution to speaker discrimination, butare neither necessary nor su�cient for identifying the transition. The cue is perhaps mostreliable when the transition is between speakers of di�erent gender, but the overlap of ranges is3



still considerable. Male vocal chords, tending to be longer and heavier than female's, generallyproduce fundamental frequencies in the range between 80-250 Hz, while those produced byfemales are generally in the range between 150-500 Hz. The range for children is slightly higherthan that of for women.Averaging of the speech signal over a window of time and looking for large changes in thismeasure is a possible technique, but we have found that pitch within a single utterance canvary widely even when averaged over a window of two or more seconds. Averaging also has thedisadvantage of being too inuenced by extremes; the more outlandish the greater the inuence.We have therefore adopted the use of a change in pitch range for agging possible speakertransitions.The range has two frequency bounds: one above which a certain percentage of input pitchvalues lie, the other below which a certain percentage lie over the duration of a time window. Ifa cuto� percentage parameter is set at 50%, for example, the mean is tracked. We are currentlyusing a cuto� of 25% for both the upper and lower range, and a window of 2 seconds. The actualfrequency of outliers thus have no e�ect on the range computation no matter how outlandish,making this method more robust than averaging with particularly \prosodic" speakers.The temporal localization ability of the range change discrimination technique is better thanthe window size, since it depends upon the cuto� percentages as well. With cuto� percentagesof less than 50%, the high bound is more sensitive (responds more quickly) to an increase inupper range than to a decrease, and the low bound more sensitive to a decrease in the lowerrange than an increase. Changes to the range in the \sensitive direction" of the bound measurescan happen as quickly as the cuto� percentage multiplied by the window length.5.2 Spectrally-based Speaker DiscriminationSpeaker variation is the bane of speech processors, and great pains are taken to normalize, com-pensate or otherwise make systems less sensitive them. Sources of variation include regionalaccents, emotional stress, speaking rate, physical impediments, health, gender, age, and chest,glottis and vocal tract morphology. With so much inter-speaker variability, it seems that auto-matic speaker discrimination should be easy. The di�culty, of course, lies in �nding acousticfeatures that change less within a speaker than across speakers.We are currently exploring a spectrally based method. It is even more true for spectra thanfor pitch, that no average over a window short enough for reasonably fast detection of speakerchange, will be stationary over the course of a single speaker utterance.One way to eliminate the e�ects of intra-speaker spectral variation would be to compareparticular phonemes of one speaker to the same phonemes of another (recall that phonemes arelinguistically, not acoustically, de�ned). This is one of the methods used in speaker identi�cationand veri�cation when comparing input to a known stored utterance [Furui, 1986]. There areseveral problems with this approach. First, it involves the identi�cation of the phonemes. Sinceone of the manifestations of speaker di�erences is that di�erent vowels spoken by the respectivespeakers can overlap in formant space [Peterson and Barney, 1952], then a fairly complete speechrecognition system would have to be a part of the discrimination mechanism, and would thuscarry a substantial computational burden. Another problem with this approach, is that speakerdiscrimination would be language dependent, and people can normally detect speaker changeseven when a language unknown to the observer is being spoken.Our method, related to this same-phoneme comparison method, is to break up a spectralspace into regions, and compare new input only to stored data in the same spectral region that4



the input belongs to. This eliminates the need for phoneme identi�cation (though at the expenseof being able to use that particular aspect of variation in the process), and turns the approachinto a kind of spectral redundancy measure.To break the representation space space into regions, we recorded 15 di�erent voiced sounds(vowels, liquids and fricatives) at as close to a steady state as they could be spoken. SixteenLPC-derived cepstral coe�cients were taken using 25 ms windows stepped every 10 ms, and thevectors were averaged to produce one representative vector for each sound.During the processing of segments of the input stream that have already been labeled by oursystem as both \speech" and \pitched", the most recent 750 ms (the \recency" window) of inputvectors are compared to the previous 3 seconds (the \history" window), and a novelty score iscomputed. If the novelty score exceeds a certain threshold, then a new speaker is agged asstarting at the time corresponding to the beginning of the recency window.The way the novelty score is computed is by �rst identifying the region into which each inputvector falls, and then �nding the closest vector in the history window already stored in thatregion. Euclidean distance, a standard for comparing cepstral vectors, is used. If this distanceexceeds a threshold parameter, then the input vector is agged as novel (see Fig. 1). If thenumber of vectors in the recency window that are agged as novel is greater than a secondthreshold parameter (expressed as a percentage of the number of data points that the recencywindow holds), then the criteria for identifying a speaker transition is met.A brief description of how the parameters were determined sheds some light on how themethod works. The tessellation of cepstral space limits the range of history vectors that recentinputs are compared to. This is what prevents the intra-speaker spectral variation, due todi�erent vowels, to inuence the measure. Thus the number of regions must be large enough toprevent too many cross-vowel comparisons. Our tessellation corresponds roughly to the numberof vowels and semivowels (glides and liquids) used in the English language. The number ofregions must not be too large, lest there never be a \history" vector in the same region as theinput for comparison. Similarly, the length of the history window, while needing to be as short aspossible to achieve acceptable temporal resolution, needs to be long enough so that at any giventime, there is a high probability that there are history window vectors in the same region asthe input. The three seconds of \history" maintained provides reasonable assurance that muchof the input will fall in regions with stored vectors. The recency window needs to be short forresolution, but long for robustness, and long enough so that history vectors in the same regionare from a previous entry of the trajectory into the region. When the recency window is so shortthat this condition is not met, then the distance between a recency vector and a history vectoris determined by their distance along the trajectory itself rather than a speaker-characteristicuse of the region of cepstral space.This spectral discrimination component of the system is still being developed, but preliminaryresults show some promise. Figure 2 (a,b,c) shows the running novelty score for three di�erentspeakers reading the same passage from a book. The maximum possible novelty score is 150(if each of the 5 ms-spaced vectors in the .75 second recency windows was novel). The inputfor Figure 2 (d) was constructed from the �rst 12 seconds from the �rst reader, the second 12seconds from the second reader and the �nal 12 seconds from the third reader. At each splice,the speaker changed in mid sentence (though not mid-word), while the natural ow of the textwas maintained. The novelty scores following each speaker changes can be seen to reach a peakhigher than any of the individual speaker scores.5
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Figure 1: The successive cepstral vectors trace a trajectory in the tessellated space, and vectorswithin the \recency" window (most recent .75 seconds) are compared to those in the \history"window (extending back 3 seconds) that were in the same template region. If the distancebetween a recency vector and the closest history vector exceeds a threshold, it adds to thenovelty score.
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Figure 2: Novelty scores for 36 seconds of a paragraph read by (a) male speaker \G", (b) malespeaker \L", and (c) female speaker \S". (d) The novelty score for the same paragraph splicedtogether from the �rst 12 seconds from \L", the second 12 seconds from \G", and the last 12seconds from \S". The traces of the individual speakers can be recognized in (d) except just afterthe speaker changes where the score suddenly jumps.
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Preliminary investigations suggest that the method described is fairly robust, although thevariations within a single speaker can still produce novelty scores in the vicinity of speaker-changepeaks. The technique has the advantage of having a relatively light computationally load sinceit requires no speech or phoneme recognition, and because the input vector is only compared toa fraction of the recent speech utterance. The computation other than the distance measuresis minimal. The method might also be useful for text-independent speaker identi�cation andveri�cation by concatenating stored speech of a known speaker with a new speech signal andderiving the novelty score.There are a number of ways in which this spectral method might be be improved. UsingPerceptual Linear Predictive analysis rather than LPC derived cepstral coe�cients may provebene�cial since distances between PLP vectors have been shown to correlate more consistentlywith perceptual distance [Hermansky, 1990]. The regions could be made adaptive with somecontinuously updated clustering method. While most likely improving the performance overthe a priori and arbitrary division of the representation space, this would add considerablecomputation time. It also appears that some of our representation regions are proving to be moreuseful for discrimination than others (which is suggested by the observation that parts of thespectrum are more useful than others in identifying voice types [Bloothooft and Plomp, 1986]),and a systematic exploration of this will undoubtedly improve both the speed and the accuracyof this technique. Finally, other acoustic features that typically vary across speakers, but havea high intrapeaker variability with a high correlation to spectral variation (eg. spectral tilt,relative levels of even and odd harmonics, breathiness) might be more usefully compared byregion in the manner described herein.6 DiscussionIn our video classi�cation system, segment transition decisions in audio are based on less tem-porally localized information than are video transition decisions. However, all event labeling isdone within 2 seconds of the event, and the processing runs in close to real time on a Sparcworkstation, the actual run time being signal dependent.The whole audio subsystem consists of some 20 or so di�erent signal and symbol processing\�lters" which can be run in a exible ordering depending on the goals of the system. A uniformmethod of labeling and communication between processes has been developed which allows theinformation gleaned from one processes to control the processing parameters of another. Futurework along these lines will make the ow of processing through the di�erent �ltering processesmore exible and integrated.References[Bloothooft and Plomp, 1986] Bloothooft, G. and Plomp, R. (1986). \Spectral analysis of sungvowels. III. Characteristics of singers and modes of singing," J. Acoust. Soc. Am. 79, 852{864.[Bregman, 1990] Bregman, A. (1990). Auditory Scene Analysis (M.I.T. Press, Cambridge).[Cohen, Grossberg, and Wyse, 1995] Cohen, M., Grossberg, S., and Wyse, L. (1995). \A spec-tral network model of pitch perception," J. Acoust. Soc. Am. 98, 862{879.8
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